|
|
A005188
|
|
Armstrong (or pluperfect, or Plus Perfect, or narcissistic) numbers: m-digit positive numbers equal to sum of the m-th powers of their digits.
(Formerly M0488)
|
|
91
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, 32164049650, 32164049651
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A finite sequence, the 88th and last term being 115132219018763992565095597973971522401.
Let k = d_1 d_2 ... d_n in base 10; then k is in the sequence iff k = Sum_{i=1..n} d_i^n.
These are the fixed points in the "Recurring Digital Invariant Variant" described in A151543.
a(15) = A229381(3) = 8208 is the "Simpsons' narcissistic number".
If a(n) is a multiple of 10, then a(n+1) = a(n) + 1, and if a(n) == 1 (mod 10) then a(n-1) = a(n) - 1 except for n = 1, cf. Examples. - M. F. Hasler, Oct 18 2018
Named after Michael Frederick Armstrong (1941-2020), who used these numbers in his computing class at the University of Rochester in the mid 1960's. - Amiram Eldar, Mar 09 2024
|
|
REFERENCES
|
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 88, pp. 30-31, Ellipses, Paris 2008.
Lionel E. Deimel, Jr. and Michael T. Jones, Finding Pluperfect Digital Invariants: Techniques, Results and Observations, J. Rec. Math., 14 (1981), 87-108.
Jean-Pierre Lamoitier, Fifty Basic Exercises. SYBEX Inc., 1981.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
Alfred S. Posamentier, Numbers: Their Tales, Types, and Treasures, Prometheus Books, 2015, pp. 242-244.
Joe Roberts, The Lure of the Integers, The Mathematical Association of America, 1992, page 36.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Harvey Heinz, Narcissistic Numbers (backup from March 2018 on web/archive.org: page no longer available), Sep. 1998, last updated in Sep. 2010.
L. H. & W. Lopez, PlanetMath.Org, Armstrong number (latest backup on web.archive.org of ArmstrongNumber.html from 2012), published by L.H. not later than July 2007.
Tomas Antonio Mendes Oliveira e Silva (tos(AT)ci.ua.pt), Loneliness of the Factorions, gave the full sequence in a posting (Article 42889) to sci.math on May 09 1994.
D. T. Winter, Table of Armstrong Numbers (latest backup on web.archive.org from Jan. 2010; page no longer available), published not later than Aug. 2003.
|
|
EXAMPLE
|
153 = 1^3 + 5^3 + 3^3,
8208 = 8^4 + 2^4 + 0^4 + 8^4,
4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
The eight terms 370, 24678050, 32164049650, 4338281769391370, 3706907995955475988644380, 19008174136254279995012734740, 186709961001538790100634132976990 and 115132219018763992565095597973971522400 end in a digit zero, therefore their successor a(n) + 1 is the next term a(n+1). This also yields the last term of the sequence. The initial a(1) = 1 is the only term ending in a digit 1 not preceded by a(n) - 1. - M. F. Hasler, Oct 18 2018
|
|
MAPLE
|
filter:= proc(k) local d;
d:= 1 + ilog10(k);
add(s^d, s=convert(k, base, 10)) = k
end proc:
|
|
MATHEMATICA
|
f[n_] := Plus @@ (IntegerDigits[n]^Floor[ Log[10, n] + 1]); Select[ Range[10^7], f[ # ] == # &] (* Robert G. Wilson v, May 04 2005 *)
Select[Range[10^7], #==Total[IntegerDigits[#]^IntegerLength[#]]&] (* Harvey P. Dale, Sep 30 2011 *)
|
|
PROG
|
(PARI) select( is_A005188(n)={n==vecsum([d^#n|d<-n=digits(n)])}, [0..9999]) \\ M. F. Hasler, Nov 18 2019
(Python)
from itertools import combinations_with_replacement
for k in range(1, 10):
a = [i**k for i in range(10)]
for b in combinations_with_replacement(range(10), k):
x = sum(map(lambda y:a[y], b))
if x > 0 and tuple(int(d) for d in sorted(str(x))) == b:
|
|
CROSSREFS
|
Similar to but different from A023052.
|
|
KEYWORD
|
nonn,base,fini,full,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
32164049651 from Amit Munje (amit.munje(AT)gmail.com), Oct 07 2006
In order to agree with the Definition, first comment modified by Jonathan Sondow, Jan 02 2015
Comment in name moved to comment section and links edited by M. F. Hasler, Oct 18 2018
|
|
STATUS
|
approved
|
|
|
|