login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005188 Armstrong (or pluperfect, or Plus Perfect, or narcissistic) numbers: m-digit positive numbers equal to sum of the m-th powers of their digits.
(Formerly M0488)
91
1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, 32164049650, 32164049651 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A finite sequence, the 88th and last term being 115132219018763992565095597973971522401.
Let k = d_1 d_2 ... d_n in base 10; then k is in the sequence iff k = Sum_{i=1..n} d_i^n.
These are the fixed points in the "Recurring Digital Invariant Variant" described in A151543.
a(15) = A229381(3) = 8208 is the "Simpsons' narcissistic number".
If a(n) is a multiple of 10, then a(n+1) = a(n) + 1, and if a(n) == 1 (mod 10) then a(n-1) = a(n) - 1 except for n = 1, cf. Examples. - M. F. Hasler, Oct 18 2018
Named after Michael Frederick Armstrong (1941-2020), who used these numbers in his computing class at the University of Rochester in the mid 1960's. - Amiram Eldar, Mar 09 2024
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 88, pp. 30-31, Ellipses, Paris 2008.
Lionel E. Deimel, Jr. and Michael T. Jones, Finding Pluperfect Digital Invariants: Techniques, Results and Observations, J. Rec. Math., 14 (1981), 87-108.
Jean-Pierre Lamoitier, Fifty Basic Exercises. SYBEX Inc., 1981.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
Alfred S. Posamentier, Numbers: Their Tales, Types, and Treasures, Prometheus Books, 2015, pp. 242-244.
Joe Roberts, The Lure of the Integers, The Mathematical Association of America, 1992, page 36.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..88 (the full list of terms, from Winter)
Pat Ballew, The Cubic Attractiveness of 153, Pat's Blog, May 30, 2023.
Hans J. de Jong, Letter to N. J. A. Sloane, Mar 8 1988.
Lionel E. Deimel, Armstrong Numbers.
Lionel E. Deimel, Mystery Solved!, Lionel Deimel’s Web Log, May 5, 2010.
Lionel E. Deimel, Narcissistic Numbers.
Martin Gardner & N. J. A. Sloane, Correspondence, 1973-74.
Harvey Heinz, Narcissistic Numbers (backup from March 2018 on web/archive.org: page no longer available), Sep. 1998, last updated in Sep. 2010.
History of Science and Mathematics StackExchange, Armstrong numbers - who is or was Armstrong?, 2021.
L. H. & W. Lopez, PlanetMath.Org, Armstrong number (latest backup on web.archive.org of ArmstrongNumber.html from 2012), published by L.H. not later than July 2007.
Gordon L. Miller and Mary T. Whalen, Armstrong Numbers: 153 = 1^3 + 5^3 + 3^3, Fibonacci Quarterly, 30-3 (1992), 221-224.
Tomas Antonio Mendes Oliveira e Silva (tos(AT)ci.ua.pt), Loneliness of the Factorions, gave the full sequence in a posting (Article 42889) to sci.math on May 09 1994.
B. Shader, Armstrong number.
Eric Weisstein's World of Mathematics, Narcissistic Number.
Robert G. Wilson v, Letter to N. J. A. Sloane, Jan 23 1989.
D. T. Winter, Table of Armstrong Numbers (latest backup on web.archive.org from Jan. 2010; page no longer available), published not later than Aug. 2003.
EXAMPLE
153 = 1^3 + 5^3 + 3^3,
8208 = 8^4 + 2^4 + 0^4 + 8^4,
4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
The eight terms 370, 24678050, 32164049650, 4338281769391370, 3706907995955475988644380, 19008174136254279995012734740, 186709961001538790100634132976990 and 115132219018763992565095597973971522400 end in a digit zero, therefore their successor a(n) + 1 is the next term a(n+1). This also yields the last term of the sequence. The initial a(1) = 1 is the only term ending in a digit 1 not preceded by a(n) - 1. - M. F. Hasler, Oct 18 2018
MAPLE
filter:= proc(k) local d;
d:= 1 + ilog10(k);
add(s^d, s=convert(k, base, 10)) = k
end proc:
select(filter, [$1..10^6]); # Robert Israel, Jan 02 2015
MATHEMATICA
f[n_] := Plus @@ (IntegerDigits[n]^Floor[ Log[10, n] + 1]); Select[ Range[10^7], f[ # ] == # &] (* Robert G. Wilson v, May 04 2005 *)
Select[Range[10^7], #==Total[IntegerDigits[#]^IntegerLength[#]]&] (* Harvey P. Dale, Sep 30 2011 *)
PROG
(PARI) is(n)=my(v=digits(n)); sum(i=1, #v, v[i]^#v)==n \\ Charles R Greathouse IV, Nov 20 2012
(PARI) select( is_A005188(n)={n==vecsum([d^#n|d<-n=digits(n)])}, [0..9999]) \\ M. F. Hasler, Nov 18 2019
(Python)
from itertools import combinations_with_replacement
A005188_list = []
for k in range(1, 10):
a = [i**k for i in range(10)]
for b in combinations_with_replacement(range(10), k):
x = sum(map(lambda y:a[y], b))
if x > 0 and tuple(int(d) for d in sorted(str(x))) == b:
A005188_list.append(x)
A005188_list = sorted(A005188_list) # Chai Wah Wu, Aug 25 2015
CROSSREFS
Similar to but different from A023052.
Cf. A151543.
Cf. A010343 to A010354 (bases 4 to 9). - R. J. Mathar, Jun 28 2009
Sequence in context: A342157 A306360 A023052 * A032569 A343036 A254960
KEYWORD
nonn,base,fini,full,nice
AUTHOR
EXTENSIONS
32164049651 from Amit Munje (amit.munje(AT)gmail.com), Oct 07 2006
In order to agree with the Definition, first comment modified by Jonathan Sondow, Jan 02 2015
Comment in name moved to comment section and links edited by M. F. Hasler, Oct 18 2018
"Positive" added to definition by N. J. A. Sloane, Nov 18 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 12:31 EDT 2024. Contains 375921 sequences. (Running on oeis4.)