The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005188 Armstrong (or pluperfect, or Plus Perfect, or narcissistic) numbers: m-digit positive numbers equal to sum of the m-th powers of their digits. (Formerly M0488) 89
 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, 32164049650, 32164049651 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A finite sequence, the 88th and last term being 115132219018763992565095597973971522401. Let k = d_1 d_2 ... d_n in base 10; then k is in the sequence iff k = Sum_{i=1..n} d_i^n. These are the fixed points in the "Recurring Digital Invariant Variant" described in A151543. a(15) = A229381(3) = 8208 is the "Simpsons' narcissistic number". If a(n) is a multiple of 10, then a(n+1) = a(n) + 1, and if a(n) == 1 (mod 10) then a(n-1) = a(n) - 1 except for n = 1, cf. Examples. - M. F. Hasler, Oct 18 2018 REFERENCES J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 88, pp. 30-31, Ellipses, Paris 2008. Lionel E. Deimel, Jr. and Michael T. Jones, Finding Pluperfect Digital Invariants: Techniques, Results and Observations, J. Rec. Math., 14 (1981), 87-108. J. P. Lamoitier, Fifty Basic Exercises. SYBEX Inc., 1981. Tomas Antonio Mendes Oliveira e Silva (tos(AT)ci.ua.pt) gave the full sequence in a posting (Article 42889) to sci.math on May 09 1994. Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68. Joe Roberts, "The Lure of the Integers", page 36. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..88 (the full list of terms, from Winter) Anonymous, Narcissistic number H. de Jong, Letter to N. J. A. Sloane, Mar 8 1988. L. E. Deimel, Narcissistic Numbers M. Gardner & N. J. A. Sloane, Correspondence, 1973-74 H. Heinz, Narcissistic Numbers (backup from March 2018 on web/archive.org: page no longer available), Sep. 1998, last updated in Sep. 2010. L. H. & W. Lopez, PlanetMath.Org, Armstrong number (latest backup on web.archive.org of ArmstrongNumber.html from 2012), published by L.H. not later than July 2007. Gordon L. Miller and Mary T. Whalen, Armstrong Numbers: 153 = 1^3 + 5^3 + 3^3, Fibonacci Quarterly, 30-3 (1992), 221-224. W. Schneider, Perfect Digital Invariants: Pluperfect Digital Invariants(PPDIs) B. Shader, Armstrong number Eric Weisstein's World of Mathematics, Narcissistic Number Wikipedia, Narcissistic number Robert G. Wilson v, Letter to N. J. A. Sloane, Jan 23 1989. D. T. Winter, Table of Armstrong Numbers (latest backup on web.archive.org from Jan. 2010; page no longer available), published not later than Aug. 2003. EXAMPLE 153 = 1^3 + 5^3 + 3^3, 8208 = 8^4 + 2^4 + 0^4 + 8^4, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7. The eight terms 370, 24678050, 32164049650, 4338281769391370, 3706907995955475988644380, 19008174136254279995012734740, 186709961001538790100634132976990 and 115132219018763992565095597973971522400 end in a digit zero, therefore their successor a(n) + 1 is the next term a(n+1). This also yields the last term of the sequence. The initial a(1) = 1 is the only term ending in a digit 1 not preceded by a(n) - 1. - M. F. Hasler, Oct 18 2018 MAPLE filter:= proc(k) local d; d:= 1 + ilog10(k); add(s^d, s=convert(k, base, 10)) = k end proc: select(filter, [\$1..10^6]); # Robert Israel, Jan 02 2015 MATHEMATICA f[n_] := Plus @@ (IntegerDigits[n]^Floor[ Log[10, n] + 1]); Select[ Range[10^7], f[ # ] == # &] (* Robert G. Wilson v, May 04 2005 *) Select[Range[10^7], #==Total[IntegerDigits[#]^IntegerLength[#]]&] (* Harvey P. Dale, Sep 30 2011 *) PROG (PARI) is(n)=my(v=digits(n)); sum(i=1, #v, v[i]^#v)==n \\ Charles R Greathouse IV, Nov 20 2012 (PARI) select( is_A005188(n)={n==vecsum([d^#n|d<-n=digits(n)])}, [0..9999]) \\ M. F. Hasler, Nov 18 2019 (Python) from itertools import combinations_with_replacement A005188_list = [] for k in range(1, 10): a = [i**k for i in range(10)] for b in combinations_with_replacement(range(10), k): x = sum(map(lambda y:a[y], b)) if x > 0 and tuple(int(d) for d in sorted(str(x))) == b: A005188_list.append(x) A005188_list = sorted(A005188_list) # Chai Wah Wu, Aug 25 2015 CROSSREFS Cf. A001694, A007532, A005934, A003321, A014576, A046074. Similar to but different from A023052. Cf. A151543. Cf. A010343 to A010354 (bases 4 to 9). - R. J. Mathar, Jun 28 2009 Sequence in context: A342157 A306360 A023052 * A032569 A343036 A254960 Adjacent sequences: A005185 A005186 A005187 * A005189 A005190 A005191 KEYWORD nonn,base,fini,full,nice AUTHOR N. J. A. Sloane, Robert G. Wilson v EXTENSIONS 32164049651 from Amit Munje (amit.munje(AT)gmail.com), Oct 07 2006 In order to agree with the Definition, first comment modified by Jonathan Sondow, Jan 02 2015 Comment in name moved to comment section and links edited by M. F. Hasler, Oct 18 2018 "Positive" added to definition by N. J. A. Sloane, Nov 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 02:24 EDT 2023. Contains 365714 sequences. (Running on oeis4.)