login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003321
Smallest n-th order perfect digital invariant or PDI: smallest number > 1 equal to sum of n-th powers of its digits, or 0 if no such number exists.
(Formerly M5403)
30
2, 0, 153, 1634, 4150, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 564240140138, 28116440335967, 0, 4338281769391370, 233411150132317, 0, 1517841543307505039, 63105425988599693916
OFFSET
1,1
COMMENTS
Except for the initial term, this is the third column of A252648. - M. F. Hasler, Feb 16 2015
a(n) = 0 if n>1 and in A262094. - Dmitry Kamenetsky, Jun 05 2020
REFERENCES
M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons Ltd. 1966, p. 164.
J. S. Madachy, Madachy's Mathematical Recreations, Dover, p. 164.
C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. E. Deimel, Narcissistic Numbers
Eric Weisstein's World of Mathematics, Narcissistic Number.
EXAMPLE
1^3 + 5^3 + 3^3 = 153.
1*0^17 + 5*1^17 + 2*2^17 + 4*3^17 + 1*4^17 + 1*5^17 + 1*7^17 = 233411150132317.
PROG
(PARI) a(n)=m=1; while(m*9^n>=10^m, m++); for(k=2, 10^m, d=digits(k); s=sum(i=1, #d, d[i]^n); if(s==k, return(k))); 0
n=1; while(n<10, print1(a(n), ", "); n++) \\ Derek Orr, Dec 19 2014
CROSSREFS
In other bases: A033835 (base 3), A033836 (base 4), A033837 (base 5), A033838 (base 6), A033839 (base 7), A033840 (base 8), A033841 (base 9).
Sequence in context: A357542 A374275 A339185 * A012333 A012329 A064156
KEYWORD
nonn,base,nice
EXTENSIONS
Additional comments from Lekraj Beedassy, May 23 2001
Extended and cross-references edited by Joseph Myers, Jun 28 2009
STATUS
approved