The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003318 a(n + 1) = 1 + a( floor(n/1) ) + a( floor(n/2) ) + ... + a( floor(n/n) ). (Formerly M1052) 3
 1, 2, 4, 7, 12, 18, 28, 39, 55, 74, 100, 127, 167, 208, 261, 322, 399, 477, 581, 686, 820, 967, 1142, 1318, 1545, 1778, 2053, 2347, 2697, 3048, 3486, 3925, 4441, 4986, 5610, 6250, 7024, 7799, 8680, 9604, 10673, 11743, 13008, 14274, 15718, 17239, 18937, 20636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A003238. - Emeric Deutsch, Dec 17 2014 REFERENCES Goldberg, M. K.; Livshits, E. M.; Minimal universal trees. (Russian) Mat. Zametki 4 1968 371-379. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. C. Read, personal communication. LINKS Joerg Arndt, Table of n, a(n) for n = 1..1000 M. K. Gol'dberg, É. M. Livshits, On minimal universal trees, Mathematical notes of the Academy of Sciences of the USSR, September 1968, Volume 4, Issue 3, pp 713-717, translated from Matematicheskie Zametki, Vol. 4, No. 3, pp. 371-379, September, 1968. R. C. Read, Letter to N. J. A. Sloane and notes, May 1974 MAPLE A[1]:= 1; for n from 1 to 99 do   A[n+1]:= 1 + add(A[floor(n/k)], k=1..n) od: seq(A[n], n=1..100); # Robert Israel, Aug 24 2014 PROG (PARI) N=1001; v=vector(N, n, n==1); for(n=1, N-1, v[n+1]=1 + sum(k=1, n, v[floor(n/k)]) ); for(n=1, N, print(n, " ", v[n])); \\ b-file \\ Joerg Arndt, Aug 25 2014 CROSSREFS Cf. A003238 (first differences). Sequence in context: A175812 A002621 A033500 * A329398 A035300 A035296 Adjacent sequences:  A003315 A003316 A003317 * A003319 A003320 A003321 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 06:13 EST 2020. Contains 332159 sequences. (Running on oeis4.)