login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343657
Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.
6
1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} A000005(k^(n-k)).
EXAMPLE
The a(7) = 27 divisors:
1 32 81 64 25 6 1
16 27 32 5 3
8 9 16 1 2
4 3 8 1
2 1 4
1 2
1
MATHEMATICA
Total/@Table[DivisorSigma[0, k^(n-k)], {n, 30}, {k, n}]
PROG
(Python 3.8+)
from math import prod
from sympy import factorint
def A343657(n): return 1 if n == 1 else 2 + sum((prod(d*(n-k)+1 for d in factorint(k).values())) for k in range(2, n)) # Chai Wah Wu, Jun 03 2021
CROSSREFS
Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.
Sequence in context: A049703 A175812 A002621 * A363211 A033500 A003318
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 29 2021
STATUS
approved