The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175812 Partial sums of ceiling(n^2/6). 1
 0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 69, 90, 114, 143, 176, 214, 257, 306, 360, 421, 488, 562, 643, 732, 828, 933, 1046, 1168, 1299, 1440, 1590, 1751, 1922, 2104, 2297, 2502, 2718, 2947, 3188, 3442, 3709, 3990, 4284, 4593, 4916, 5254, 5607, 5976, 6360, 6761, 7178 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A008747. There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1). Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. FORMULA a(n) = round((2*n+1)*(2*n^2 + 2*n + 17)/72). a(n) = floor((n+1)*(2*n^2 + n + 17)/36). a(n) = ceiling((2*n^3 + 3*n^2 + 18*n)/36). a(n) = round((2*n^3 + 3*n^2 + 18*n)/36). a(n) = a(n-6) + (n+1)*(n-6) + 18, n > 5. From Mircea Merca, Jan 09 2011: (Start) a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7), n > 6. G.f.: x*(x^4+1) / ( (x+1)*(x^2+x+1)*(x-1)^4 ). (End) EXAMPLE a(6) = 0 + 1 + 1 + 2 + 3 + 5 + 6 = 18. MAPLE seq(floor((n+1)*(2*n^2+n+17)/36), n=0..50) MATHEMATICA Accumulate[Ceiling[Range[0, 50]^2/6]] (* Harvey P. Dale, Jan 17 2016 *) PROG (MAGMA) [Round((2*n+1)*(2*n^2+2*n+17)/72): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011 (PARI) a(n) = (n+1)*(2*n^2+n+17)\36; \\ Altug Alkan, Sep 21 2018 CROSSREFS Cf. A008747. Sequence in context: A065962 A173722 A049703 * A002621 A343657 A033500 Adjacent sequences:  A175809 A175810 A175811 * A175813 A175814 A175815 KEYWORD nonn,easy AUTHOR Mircea Merca, Dec 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 17:37 EDT 2021. Contains 346294 sequences. (Running on oeis4.)