OFFSET
0,2
COMMENTS
A set system (set of sets) is an antichain if no element is a subset of any other.
LINKS
Denis Bouyssou, Thierry Marchant, and Marc Pirlot, ELECTRE TRI-nB, pseudo-disjunctive: axiomatic and combinatorial results, arXiv:2410.18443 [cs.DM], 2024. See p. 14.
Dmitry I. Ignatov, A Note on the Number of (Maximal) Antichains in the Lattice of Set Partitions. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham.
Dmitry I. Ignatov, On the Number of Maximal Antichains in Boolean Lattices for n up to 7. Lobachevskii J. Math., 44 (2023), 137-146.
FORMULA
For n > 0, a(n) = A326359(n) + 1.
EXAMPLE
The a(0) = 1 through a(3) = 7 maximal antichains:
{} {} {} {}
{1} {12} {123}
{1}{2} {1}{23}
{2}{13}
{3}{12}
{1}{2}{3}
{12}{13}{23}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[stableSets[Subsets[Range[n]], SubsetQ]]], {n, 0, 5}]
(* alternatively *)
maxachP[n_]:=FindIndependentVertexSet[
Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]],
Subsets[Range[n]]]], Infinity, All];
Table[Length[maxachP[n]], {n, 0, 6}] (* Mamuka Jibladze, Jan 25 2021 *)
PROG
(GAP) LoadPackage("grape");
maxachP:=function(n) local g, G;
g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end,
function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true);
G:=AutGroupGraph(g);
return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2),
function(c) return Length(Orbit(G, c, OnSets)); end);
end;
List([0..7], maxachP); # Mamuka Jibladze, Jan 26 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 01 2019
EXTENSIONS
a(6)-a(7) from Mamuka Jibladze, Jan 26 2021
STATUS
approved