login
A326363
Number of maximal intersecting antichains of subsets of {1..n}.
15
1, 2, 4, 6, 21, 169, 11749, 12160648
OFFSET
0,2
COMMENTS
A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint.
FORMULA
For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1.
EXAMPLE
The a(1) = 1 through a(4) = 21 maximal intersecting antichains:
{} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{12} {3} {3}
{123} {4}
{12}{13}{23} {1234}
{12}{13}{23}
{12}{14}{24}
{13}{14}{34}
{23}{24}{34}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{24}{123}{134}
{34}{123}{124}
{12}{13}{14}{234}
{12}{23}{24}{134}
{13}{23}{34}{124}
{14}{24}{34}{123}
{123}{124}{134}{234}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[stableSets[Subsets[Range[n], {0, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&]]], {n, 0, 5}]
(* 2nd program *)
n = 2^6; g = CompleteGraph[n]; i = 0;
While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
sets = FindClique[g, Infinity, All];
Length[sets] (* Elijah Beregovsky, May 06 2020 *)
CROSSREFS
The case with nonempty, non-singleton edges is A326362.
Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.
Sequence in context: A333992 A176652 A251724 * A273522 A227626 A152482
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 01 2019
EXTENSIONS
a(7) from Elijah Beregovsky, May 06 2020
STATUS
approved