This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326363 Number of maximal intersecting antichains of subsets of {1..n}. 15
 1, 2, 4, 6, 21, 169, 11749 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint. LINKS FORMULA For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1. EXAMPLE The a(1) = 1 through a(4) = 21 maximal intersecting antichains:   {}   {}    {}            {}   {1}  {1}   {1}           {1}        {2}   {2}           {2}        {12}  {3}           {3}              {123}         {4}              {12}{13}{23}  {1234}                            {12}{13}{23}                            {12}{14}{24}                            {13}{14}{34}                            {23}{24}{34}                            {12}{134}{234}                            {13}{124}{234}                            {14}{123}{234}                            {23}{124}{134}                            {24}{123}{134}                            {34}{123}{124}                            {12}{13}{14}{234}                            {12}{23}{24}{134}                            {13}{23}{34}{124}                            {14}{24}{34}{123}                            {123}{124}{134}{234} MATHEMATICA stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]]; fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n], {0, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&]]], {n, 0, 5}] CROSSREFS The case with nonempty, non-singleton edges is A326362. Antichains of nonempty, non-singleton sets are A307249. Minimal covering antichains are A046165. Maximal intersecting antichains are A007363. Maximal antichains of nonempty sets are A326359. Cf. A000372, A003182, A006126, A006602, A014466, A051185, A058891, A261005, A305000, A305844, A326358, A326360, A326361. Sequence in context: A241210 A176652 A251724 * A273522 A227626 A152482 Adjacent sequences:  A326360 A326361 A326362 * A326364 A326365 A326366 KEYWORD nonn,more AUTHOR Gus Wiseman, Jul 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)