login
A251724
a(1) = 2, and for n>1: a(n) = prime(A251719(n)) * prime(A251719(n) + n - 2), where prime(n) gives the n-th prime.
5
2, 4, 6, 21, 65, 85, 95, 115, 217, 259, 287, 301, 329, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1703, 1781, 1807, 1937, 1963, 2041, 2119, 2171, 3043, 3077, 3247, 3281, 3349, 3383, 3587, 3791, 3859, 3893, 3961, 4063, 4097, 4267, 4369, 4471, 4573, 4607, 4709, 4777, 4811, 5833, 5909, 5947, 6023, 6289, 6403, 6593, 6631, 6707, 6821, 8579
OFFSET
1,1
COMMENTS
For n >= 2: a(n) = the first "settled semiprime" in the column n of the sieve of Eratosthenes: a(n) = A083221(A251719(n), n).
The "settling of semiprimes" here means that from that semiprime onward, all the other terms in the same column n of a square array A083221 (which is constructed from the sieve of Eratosthenes) are also semiprimes, obtained by successive iterations of A003961 starting from the semiprime here given as a(n). Cf. comments in A251728 which contains all such semiprimes. The "unsettled" semiprimes are in its complement A138511.
Here we assume that A054272(n), the number of primes in interval [prime(n), prime(n)^2], is nondecreasing (implied for example if Legendre's or Brocard's conjecture is true).
LINKS
FORMULA
a(1) = 2; and for n >= 2: a(n) = A000040(A251719(n)) * A000040(A251719(n) + n - 2).
a(n) = A083221(A251719(n), n).
Other identities implied by the definition. For all n >= 1:
A078898(a(n)) = n.
A055396(a(n)) = A251719(n).
For all n >= 2:
A243055(a(n)) = n-2.
PROG
(Scheme, two versions)
(define (A251724 n) (if (= 1 n) 2 (* (A000040 (A251719 n)) (A000040 (+ (A251719 n) n -2)))))
(define (A251724 n) (A083221bi (A251719 n) n))
CROSSREFS
After initial 2, a subsequence of A251728 and A001358.
Sequence in context: A241210 A333992 A176652 * A326363 A273522 A227626
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 15 2014
STATUS
approved