login
A326362
Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.
12
1, 1, 1, 2, 16, 163, 11742, 12160640
OFFSET
0,4
COMMENTS
A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.
FORMULA
For n > 1, a(n) = A326363(n) - n - 1 = A007363(n + 1) - n.
EXAMPLE
The a(4) = 16 maximal intersecting antichains:
{{1,2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,4},{2,4}}
{{1,3},{1,4},{3,4}}
{{2,3},{2,4},{3,4}}
{{1,2},{1,3,4},{2,3,4}}
{{1,3},{1,2,4},{2,3,4}}
{{1,4},{1,2,3},{2,3,4}}
{{2,3},{1,2,4},{1,3,4}}
{{2,4},{1,2,3},{1,3,4}}
{{3,4},{1,2,3},{1,2,4}}
{{1,2},{1,3},{1,4},{2,3,4}}
{{1,2},{2,3},{2,4},{1,3,4}}
{{1,3},{2,3},{3,4},{1,2,4}}
{{1,4},{2,4},{3,4},{1,2,3}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[stableSets[Subsets[Range[n], {2, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&]]], {n, 0, 5}]
(* 2nd program *)
n = 2^6; g = CompleteGraph[n]; i = 0;
While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
sets = FindClique[g, Infinity, All];
Length[sets]-Log[2, n]-1 (* Elijah Beregovsky, May 06 2020 *)
CROSSREFS
Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.
Sequence in context: A226012 A011552 A374848 * A287222 A216598 A219397
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 01 2019
EXTENSIONS
a(7) from Elijah Beregovsky, May 06 2020
STATUS
approved