|
|
A326364
|
|
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
|
|
4
|
|
|
1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Covering means there are no isolated vertices. A set system (set of sets) is intersecting if no two edges are disjoint.
|
|
LINKS
|
Table of n, a(n) for n=0..9.
|
|
FORMULA
|
Inverse binomial transform of A326373. - Andrew Howroyd, Aug 12 2019
|
|
EXAMPLE
|
The a(3) = 2 intersecting set systems with empty intersection:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
|
|
MATHEMATICA
|
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Intersection[#1, #2]=={}&], And[Union@@#==Range[n], #=={}||Intersection@@#=={}]&]], {n, 0, 4}]
|
|
CROSSREFS
|
Covering set systems with empty intersection are A318128.
Covering, intersecting set systems are A305843.
Covering, intersecting antichains with empty intersection are A326365.
Cf. A006126, A007363, A014466, A051185, A058891, A305844, A307249, A318129, A326361, A326362, A326363.
Sequence in context: A332142 A109931 A352498 * A200951 A118710 A159513
Adjacent sequences: A326361 A326362 A326363 * A326365 A326366 A326367
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Jul 01 2019
|
|
EXTENSIONS
|
a(6)-a(9) from Andrew Howroyd, Aug 12 2019
|
|
STATUS
|
approved
|
|
|
|