login
A326364
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
4
1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
OFFSET
0,4
COMMENTS
Covering means there are no isolated vertices. A set system (set of sets) is intersecting if no two edges are disjoint.
FORMULA
Inverse binomial transform of A326373. - Andrew Howroyd, Aug 12 2019
EXAMPLE
The a(3) = 2 intersecting set systems with empty intersection:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Intersection[#1, #2]=={}&], And[Union@@#==Range[n], #=={}||Intersection@@#=={}]&]], {n, 0, 4}]
CROSSREFS
Covering set systems with empty intersection are A318128.
Covering, intersecting set systems are A305843.
Covering, intersecting antichains with empty intersection are A326365.
Sequence in context: A332142 A109931 A352498 * A200951 A118710 A159513
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 01 2019
EXTENSIONS
a(6)-a(9) from Andrew Howroyd, Aug 12 2019
STATUS
approved