The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326355 Number of permutations of length n with at most two descents. 0
 1, 1, 2, 6, 23, 93, 360, 1312, 4541, 15111, 48854, 154674, 482355, 1487905, 4553684, 13857492, 41998265, 126912075, 382702050, 1152300166, 3465813071, 10416313221, 31288785152, 93950241096, 282026883573, 846449748943, 2540120998190, 7621973606682 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS D. I. Bevan, On the growth of permutation classes, PhD thesis, The Open University, 2015. Robert Brignall, Jakub Sliacan, Combinatorial specifications for juxtapositions of permutation classes, arXiv:1902.02705 [math.CO], 2019. Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12). FORMULA G.f: 1/(1-z) + z^2/((1-z)^2*(1-2*z)) + z^3*(1+z-4*z^2)/((1-z)^3*(1-2*z)^2*(1-3*z)). a(n) = Sum_{k=0..3} A123125(n,k). - Alois P. Heinz, Sep 11 2019 a(n) = 3^n -n*2^n +n^2/2 -n/2. - R. J. Mathar, Sep 25 2019 EXAMPLE For n=4, a(4) = 23 because the permutation 4321 is the only one of length 4 to have more than 2 descents. MAPLE b:= proc(u, o, k) option remember;       `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..u)+       `if`(k<2, add(b(u+j-1, o-j, k+1), j=1..o), 0))     end: a:= n-> b(n, 0\$2): seq(a(n), n=0..28);  # Alois P. Heinz, Sep 11 2019 MATHEMATICA LinearRecurrence[{10, -40, 82, -91, 52, -12}, {1, 1, 2, 6, 23, 93}, 30] (* Jean-François Alcover, Mar 01 2020 *) CROSSREFS Permutations with at most one descent are given by A000325. Cf. A008292, A123125. Sequence in context: A150287 A150288 A150289 * A012866 A150290 A150291 Adjacent sequences:  A326352 A326353 A326354 * A326356 A326357 A326358 KEYWORD nonn,easy AUTHOR Robert Brignall, Sep 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 19:05 EDT 2020. Contains 334729 sequences. (Running on oeis4.)