login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305001
Number of labeled antichains of finite sets spanning n vertices without singletons.
23
1, 0, 1, 5, 87, 6398, 7745253, 2414573042063, 56130437190053518791691, 286386577668298410118121281898931424413687
OFFSET
0,4
COMMENTS
From Gus Wiseman, Jul 03 2019: (Start)
Also the number of antichains covering n vertices and having empty intersection (meaning there is no vertex in common to all the edges). For example, the a(3) = 5 antichains are:
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
(End)
EXAMPLE
The a(3) = 5 antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], SubsetQ], And[Union@@#==Range[n], #=={}||Intersection@@#=={}]&]], {n, 0, 5}] (* Gus Wiseman, Jul 03 2019 *)
CROSSREFS
The binomial transform is the non-covering case A307249.
The second binomial transform is A014466.
Sequence in context: A069948 A316727 A216088 * A324092 A208019 A297529
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 23 2018
EXTENSIONS
a(9) from A307249 - Dmitry I. Ignatov, Nov 27 2023
STATUS
approved