login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049703
a(0) = 0; for n>0, a(n) = A005598(n)/2.
4
0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 68, 89, 112, 141, 173, 209, 249, 297, 348, 408, 472, 542, 617, 703, 793, 893, 999, 1114, 1235, 1370, 1509, 1663, 1825, 1997, 2177, 2369, 2567, 2783, 3008, 3245, 3490, 3755, 4026, 4318
OFFSET
0,3
LINKS
FORMULA
a(n) = (1/2)*Sum_{j=0..n} T(j, n-j), for array T in A049695.
a(n) = (1/2)*(1 + (n+1)*A002088(n) - A011755(n)), with a(0) = 0. - G. C. Greubel, Dec 08 2022
MATHEMATICA
A005598[n_]:= A005598[n]= 1 +Sum[(n-j+1)*EulerPhi[j], {j, n}];
A049703[n_]:= If[n==0, 0, A005598[n]/2];
Table[A049703[n], {n, 0, 50}] (* G. C. Greubel, Dec 08 2022 *)
PROG
(Magma)
A049703:= func< n | n eq 0 select 0 else (1 +(&+[(n-j+1)*EulerPhi(j): j in [1..n]]))/2 >;
[A049703(n): n in [0..60]]; // G. C. Greubel, Dec 08 2022
(SageMath)
@CachedFunction
def A049703(n): return 0 if (n==0) else (1 + sum((n-j+1)*euler_phi(j) for j in range(1, n+1)))/2
[A049703(n) for n in range(61)] # G. C. Greubel, Dec 08 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, Apr 04 2007.
STATUS
approved