|
|
A049704
|
|
Array T read by antidiagonals; T(i,j)=number of nonnegative slopes of lines determined by two points in the triangular set {(x,y): 0<=x<=i, 0<=y<=j-j*x/i} of lattice points.
|
|
4
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 6, 5, 4, 1, 1, 1, 1, 4, 6, 6, 6, 6, 4, 1, 1, 1, 1, 5, 6, 8, 10, 8, 6, 5, 1, 1, 1, 1, 5, 7, 9, 10, 10, 9, 7, 5, 1, 1, 1, 1, 6, 9, 11, 11, 12, 11, 11
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
LINKS
|
|
|
EXAMPLE
|
The array begins:
0 1 1 1 1 1 1 1 1...
1 1 1 1 1 1 1 1 1...
1 1 2 2 3 3 4 4 5...
1 1 2 4 4 5 6 6 7...
1 1 3 4 6 6 8 9 11...
...
|
|
MATHEMATICA
|
t[i_, j_] := If[i==0||j==0, 1-KroneckerDelta[i+j], 1+Length[Union[Divide@@#& /@ Select[-Subtract@@@Subsets[Flatten[Table[{x, y}, {x, 0, i}, {y, 0, j-j*x/i}], 1], {2}], And@@Positive/@#&]]]];
(*Table[t[i, j], {i, 0, 10}, {j, 0, 10}]//TableForm*)
Flatten@Table[t[j, i-j], {i, 0, 20}, {j, 0, i}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|