The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251683 Irregular triangular array: T(n,k) is the number of ordered factorizations of n with exactly k factors, n >= 1, 1 <= k <= A086436(n). 28
 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 4, 3, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 6, 9, 4, 1, 1, 1, 2, 1, 2, 1, 1, 4, 3, 1, 1, 6, 6, 1, 1, 4, 6, 4, 1, 1, 2, 1, 2, 1, 2, 1, 7, 12, 6, 1, 1, 2, 1, 2, 1, 6, 9, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Row sums = A074206. Row lengths give A086436. T(n,2) = A070824(n). T(n,3) = A200221(n). Sum_{k>=1} k*T(n,k) = A254577. For all n > 1,  Sum_{k=1..A086436(n)} (-1)^k*T(n,k) = A008683(n). - Geoffrey Critzer, May 25 2018 From Gus Wiseman, Aug 21 2020: (Start) Also the number of strict length k + 1 chains of divisors from n to 1. For example, row n = 24 counts the following chains:   24/1  24/2/1   24/4/2/1   24/8/4/2/1         24/3/1   24/6/2/1   24/12/4/2/1         24/4/1   24/6/3/1   24/12/6/2/1         24/6/1   24/8/2/1   24/12/6/3/1         24/8/1   24/8/4/1         24/12/1  24/12/2/1                  24/12/3/1                  24/12/4/1                  24/12/6/1 (End) LINKS Alois P. Heinz, Rows n = 1..4000, flattened Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430. Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1). Eric Weisstein's World of Mathematics, Ordered Factorization FORMULA Dirichlet g.f.: 1/(1 - y*(zeta(x)-1)). EXAMPLE Triangle T(n,k) begins:   1;   1;   1;   1, 1;   1;   1, 2;   1;   1, 2, 1;   1, 1;   1, 2;   1;   1, 4, 3;   1;   1, 2;   1, 2;   ... There are 8 ordered factorizations of the integer 12: 12, 6*2, 4*3, 3*4, 2*6, 3*2*2, 2*3*2, 2*2*3.  So T(12,1)=1, T(12,2)=4, and T(12,3)=3. MAPLE with(numtheory): b:= proc(n) option remember; expand(x*(1+       add(b(n/d), d=divisors(n) minus {1, n})))     end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=1..100);  # Alois P. Heinz, Dec 07 2014 MATHEMATICA f = {{}}; f[n_] := f[n] =   Level[Table[     Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}]; Prepend[Map[Select[#, # > 0 &] &,   Drop[Transpose[     Table[Map[Count[#, k] &,       Map[Length, Table[f[n], {n, 1, 40}], {2}]], {k, 1, 10}]],    1]], {1}] // Grid (* Second program: *) b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]); T[n_] := CoefficientList[b[n]/x, x]; Array[T, 100] // Flatten (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *) CROSSREFS Cf. A008683, A070824, A200221, A254577. A008480 gives rows ends. A086436 gives row lengths. A124433 is the same except for signs and zeros. A334996 is the same except for zeros. A337107 is the restriction to factorial numbers (but with zeros). A000005 counts divisors. A001055 counts factorizations. A001222 counts prime factors with multiplicity. A074206 counts strict chains of divisors from n to 1. A067824 counts strict chains of divisors starting with n. A122651 counts strict chains of divisors summing to n. A167865 counts strict chains of divisors > 1 summing to n. A253249 counts strict nonempty chains of divisors of n. A337071 counts strict chains of divisors starting with n!. A337256 counts strict chains of divisors of n. Cf. A001221, A002033, A124010, A167865, A337070, A337105. Sequence in context: A176048 A345287 A322480 * A306261 A329722 A025430 Adjacent sequences:  A251680 A251681 A251682 * A251684 A251685 A251686 KEYWORD nonn,tabf AUTHOR Geoffrey Critzer, Dec 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 04:53 EDT 2021. Contains 347703 sequences. (Running on oeis4.)