login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251684
G.f.: exp( Sum_{n>=1} A047863(n)*x^n/n ), where A047863(n) = Sum_{k=0..n} binomial(n, k) * (2^k)^(n-k).
0
1, 2, 5, 16, 69, 426, 3947, 55612, 1177747, 36816650, 1676270109, 110202314208, 10408422663015, 1407329003121294, 271801891072128621, 74846096423770137324, 29351301902680241116593, 16374214768286861089202358, 12985582377076992552497257703, 14629438237685095017820000611400
OFFSET
0,2
COMMENTS
Logarithmic derivative yields A047863, the number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 69*x^4 + 426*x^5 + 3947*x^6 +...
where the logarithmic derivative yields A047863:
A'(x)/A(x) = 2 + 6*x + 26*x^2 + 162*x^3 + 1442*x^4 + 18306*x^5 + 330626*x^6 + 8488962*x^7 + 309465602*x^8 +...+ A047863(n+1)*x^n +...
PROG
(PARI) {A047863(n) = sum(k=0, n, binomial(n, k) * (2^k)^(n-k) )}
{a(n)=local(A); A=exp(sum(k=1, n+1, A047863(k)*x^k/k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A047863.
Sequence in context: A296675 A059295 A259408 * A129092 A110710 A245881
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 14 2015
STATUS
approved