login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251685
G.f.: Product_{n>=1} [1 + (n+1)*x^n + (n+2)*x^(n+1) + (n+3)*x^(n+2) + (n+4)*x^(n+3) +...].
1
1, 2, 6, 18, 45, 108, 252, 578, 1270, 2716, 5678, 11678, 23664, 47182, 92538, 178892, 341481, 644648, 1205062, 2231304, 4092646, 7437680, 13398520, 23939558, 42451586, 74754652, 130777182, 227346498, 392806891, 674630766, 1151926416, 1955909898, 3303296389, 5550556238, 9281646642
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1 + ((n+1)*x^n - n*x^(n+1))/(1-x)^2).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 45*x^4 + 108*x^5 + 252*x^6 + 578*x^7 +
which equals the infinite product:
A(x) = (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 +...) * (1 + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 +...) * (1 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 +...) * (1 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 +...) * (1 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8 +...) *...
Illustrate A(x) = Product_{n>=1} (1 + ((n+1)*x^n - n*x^(n+1))/(1-x)^2):
A(x) = (1 + (2*x-x^2)/(1-x)^2) * (1 + (3*x^2-2*x^3)/(1-x)^2) * (1 + (4*x^3-3*x^4)/(1-x)^2) * (1 + (5*x^4-4*x^5)/(1-x)^2) * (1 + (6*x^5-5*x^6)/(1-x)^2) * (1 + (7*x^6-6*x^7)/(1-x)^2) * (1 + (8*x^7-7*x^8)/(1-x)^2) *...
The logarithm of the n-th factor (1 + ((n+1)*x^n - n*x^(n+1))/(1-x)^2) begins:
n=1: 2*x + 2*x^2/2 + 2*x^3/3 + 2*x^4/4 + 2*x^5/5 + 2*x^6/6 +...
n=2: 6*x^2/2 + 12*x^3/3 + 2*x^4/4 - 30*x^5/5 - 42*x^6/6 + 42*x^7/7 +...
n=3: 12*x^3/3 + 20*x^4/4 + 30*x^5/5 - 6*x^6/6 - 84*x^7/7 - 220*x^8/8 +...
n=4: 20*x^4/4 + 30*x^5/5 + 42*x^6/6 + 56*x^7/7 - 28*x^8/8 - 180*x^9/9 +...
n=5: 30*x^5/5 + 42*x^6/6 + 56*x^7/7 + 72*x^8/8 + 90*x^9/9 - 70*x^10/10 +...
n=6: 42*x^6/6 + 56*x^7/7 + 72*x^8/8 + 90*x^9/9 + 110*x^10/10 +...
n=7: 56*x^7/7 + 72*x^8/8 + 90*x^9/9 + 110*x^10/10 + 132*x^11/11 +...
n=8: 72*x^8/8 + 90*x^9/9 + 110*x^10/10 + 132*x^11/11 + 156*x^12/12 +...
n=9: 90*x^9/9 + 110*x^10/10 + 132*x^11/11 + 156*x^12/12 +...
the coefficients of which may form a table to illustrate their behavior:
n=1: [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...];
n=2: [ 6, 12, 2, -30, -42, 42, 194, 138, -414, -990, -46, ...];
n=3: [ 12, 20, 30, -6, -84,-220,-240, 60, 990, 2222, 2496, ...];
n=4: [ 20, 30, 42, 56, -28,-180,-420,-770, -754, 52, 2240, ...];
n=5: [ 30, 42, 56, 72, 90, -70,-330,-714,-1248,-1960,-1800, ...];
n=6: [ 42, 56, 72, 90, 110, 132,-138,-546,-1120,-1890,-2888, ...];
n=7: [ 56, 72, 90, 110, 132, 156, 182,-238, -840,-1656,-2720, ...];
n=8: [ 72, 90, 110, 132, 156, 182, 210, 240, -376,-1224,-2340, ...];
n=9: [ 90, 110, 132, 156, 182, 210, 240, 272, 306, -558,-1710, ...];
n=10:[110, 132, 156, 182, 210, 240, 272, 306, 342, 380, -790, ...]; ...
From this, can one obtain a formula for the logarithmic series:
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 44*x^4/4 + 62*x^5/5 + 80*x^6/6 + 184*x^7/7 + 236*x^8/8 + 170*x^9/9 - 292*x^10/10 - 306*x^11/11 + 1508*x^12/12 +...
PROG
(PARI) {a(n)=local(A); A=prod(k=1, n+1, 1+((k+1)*x^k - k*x^(k+1))/(1-x)^2 +x*O(x^n) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A319415 A230137 A120414 * A341490 A308305 A054136
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 14 2015
STATUS
approved