login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251686
G.f.: exp( Sum_{n>=1} A132303(n)/3 * x^n/n ), where A132303(n) = sum of the cubes of the trinomial coefficients in row n of triangle A027907.
1
1, 1, 8, 100, 1556, 27260, 515510, 10284094, 213433728, 4566363088, 100082133066, 2236952393302, 50817223209451, 1170319824912699, 27268900054818390, 641812268110993694, 15239341125950643462, 364655982858022960206, 8785745372509009963892, 212976842702489760621536
OFFSET
0,3
COMMENTS
Self-convolution cube yields A168593.
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 100*x^3 + 1556*x^4 + 27260*x^5 +...
where
log(A(x)) = 1*x + 15*x^2/2 + 277*x^3/3 + 5727*x^4/4 + 125301*x^5/5 + 2843643*x^6/6 + 66214485*x^7/7 + 1571497119*x^8/8 +...+ A132303(n)/3*x^n/n +...
PROG
(PARI) {A027907(n, k) = polcoeff((1+x+x^2)^n, k)}
{A132303(n) = sum(k=0, 2*n, A027907(n, k)^3)}
{a(n) = if(n==0, 1, polcoeff(exp(sum(m=1, n, A132303(m)/3 * x^m/m) +x*O(x^n)), n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 28 2015
STATUS
approved