login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251687
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (1 + x + 2*x^2)^n.
3
1, 1, 1, 5, 8, 8, 16, 28, 48, 80, 128, 208, 320, 512, 768, 1216, 1792, 2816, 4096, 6400, 9216, 14336, 20480, 31744, 45056, 69632, 98304, 151552, 212992, 327680, 458752, 704512, 983040, 1507328, 2097152, 3211264, 4456448, 6815744, 9437184, 14417920, 19922944, 30408704, 41943040
OFFSET
0,4
COMMENTS
More generally, if G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (p + q*x + r*x^2)^n, then G(x) = (1 + p^2*x)*(1 + r^2*x^3)*(1 + (q^2-2*p*r)*x^2 + p^2*r^2*x^4) / (1-p*r*x^2)^2.
FORMULA
G.f.: (1 + x)*(1 + 4*x^3)*(1 - 3*x^2 + 4*x^4) / (1 - 2*x^2)^2.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 28*x^7 +...
where
log(A(x)) = (1 + x + 2^2*x^2)/A(x) * x +
(1 + 2^2*x + 5^2*x^2 + 4^2*x^3 + 4^2*x^4)/A(x)^2 * x^2/2 +
(1 + 3^2*x + 9^2*x^2 + 13^2*x^3 + 18^2*x^4 + 12^2*x^5 + 8^2*x^6)/A(x)^3 * x^3/3 +
(1 + 4^2*x + 14^2*x^2 + 28^2*x^3 + 49^2*x^4 + 56^2*x^5 + 56^2*x^6 + 32^2*x^7 + 16^2*x^8)/A(x)^4 * x^4/4 +
(1 + 5^2*x + 20^2*x^2 + 50^2*x^3 + 105^2*x^4 + 161^2*x^5 + 210^2*x^6 + 200^2*x^7 + 160^2*x^8 + 80^2*x^9 + 32^2*x^10)/A(x)^5 * x^5/5 +...
which involves the squares of coefficients in (1 + x + 2*x^2)^n - see triangle A084600.
PROG
(PARI) /* By Definition: */
{a(n, p=1, q=1, r=2)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff((p + q*x + r*x^2 +x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) /* By G.F. Identity (faster): */
{a(n, p=1, q=1, r=2)=polcoeff( (1 + p^2*x)*(1 + r^2*x^3)*(1 + (q^2-2*p*r)*x^2 + p^2*r^2*x^4) / ((1-p*r*x^2)^2 +x*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 03 2015
STATUS
approved