login
A263176
Decimal expansion of a constant related to A263136 (negated).
3
1, 5, 8, 9, 2, 4, 1, 4, 7, 1, 8, 0, 1, 6, 5, 0, 3, 5, 0, 5, 9, 9, 5, 2, 0, 0, 1, 7, 3, 7, 3, 2, 1, 4, 0, 8, 5, 5, 4, 7, 4, 6, 5, 9, 9, 9, 5, 5, 8, 3, 3, 6, 9, 6, 8, 2, 1, 8, 2, 4, 8, 0, 8, 0, 2, 7, 1, 7, 8, 2, 0, 5, 5, 7, 3, 2, 6, 5, 8, 1, 8, 3, 7, 5, 5, 0, 4, 1, 8, 3, 9, 5, 8, 7, 2, 6, 8, 9, 3, 4, 1, 6, 6, 0, 0, 2
OFFSET
0,2
FORMULA
Integral_{x=0..infinity} exp(-3*x)/(x*(1 - exp(-4*x))^2) - 1/(16*x^3) - 1/(16*x^2) + 5/(96*x*exp(x)) dx.
A263176 + A263177 = log(Gamma(1/4))/2 - Zeta'(-1)/4 - 2*log(2)/3 - log(Pi)/4 = -0.062914043561495455491893116973161914641792581828767341125... . - Vaclav Kotesovec, Oct 12 2015
EXAMPLE
-0.158924147180165035059952001737321408554746599955833696821824808027...
MATHEMATICA
NIntegrate[E^(-3*x)/(1-E^(-4*x))^2/x - 1/(16*x^3) - 1/(16*x^2) + 5*E^(-x)/(96*x), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]
CROSSREFS
Sequence in context: A251687 A336266 A241992 * A378207 A197815 A257870
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Oct 11 2015
STATUS
approved