login
A378207
Decimal expansion of the midradius of a triakis tetrahedron with unit shorter edge length.
7
5, 8, 9, 2, 5, 5, 6, 5, 0, 9, 8, 8, 7, 8, 9, 6, 0, 3, 6, 6, 7, 3, 7, 0, 3, 0, 1, 7, 5, 4, 0, 4, 0, 8, 6, 6, 0, 7, 0, 6, 9, 6, 6, 1, 4, 7, 4, 0, 3, 9, 5, 0, 3, 0, 4, 9, 0, 2, 8, 3, 2, 2, 4, 1, 6, 2, 8, 0, 5, 1, 9, 9, 3, 5, 9, 2, 1, 1, 2, 6, 6, 1, 8, 7, 6, 6, 1, 4, 7, 2
OFFSET
0,1
COMMENTS
The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.
FORMULA
Equals 5/(6*sqrt(2)) = 5/A010524.
EXAMPLE
0.589255650988789603667370301754040866070696614740...
MATHEMATICA
First[RealDigits[5/Sqrt[72], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisTetrahedron", "Midradius"], 10, 100]]
PROG
(PARI) 5/sqrt(72) \\ Charles R Greathouse IV, Feb 11 2025
CROSSREFS
Cf. A378204 (surface area), A378205 (volume), A378206 (inradius), A378208 (dihedral angle).
Cf. A093577 (midradius of a truncated tetrahedron with unit edge).
Cf. A010524.
Sequence in context: A336266 A241992 A263176 * A197815 A257870 A338275
KEYWORD
nonn,cons,easy,changed
AUTHOR
Paolo Xausa, Nov 21 2024
STATUS
approved