

A093577


Decimal expansion of (3/4)*sqrt(2).


3



1, 0, 6, 0, 6, 6, 0, 1, 7, 1, 7, 7, 9, 8, 2, 1, 2, 8, 6, 6, 0, 1, 2, 6, 6, 5, 4, 3, 1, 5, 7, 2, 7, 3, 5, 5, 8, 9, 2, 7, 2, 5, 3, 9, 0, 6, 5, 3, 2, 7, 1, 1, 0, 5, 4, 8, 8, 2, 5, 0, 9, 8, 0, 3, 4, 9, 3, 0, 4, 9, 3, 5, 8, 8, 4, 6, 5, 8, 0, 2, 7, 9, 1, 3, 7, 7, 9, 0, 6, 5, 0, 7, 4, 5, 7, 3, 1, 1, 7, 9, 5, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Side length of Prince Rupert's cube: the largest cube that can be passed through a given unit cube (slightly larger than the given cube!).


REFERENCES

Clifford A. Pickover, The Math Book, Sterling Publishing Co. (New York), 2009, p. 214.
D. J. E. Schrek, Prince Rupert's problem and its extension by Pieter Nieuwland, Scripta Math. 16 (1950), pp. 7380 and 261267.
David Wells, Penguin Dictionary of Curious and Interesting Geometry, 1991, p. 195.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Prince Rupert's Cube


EXAMPLE

1.06066017...


MATHEMATICA

RealDigits[3 Sqrt[2]/4, 10, 110][[1]] (* Bruno Berselli, Sep 20 2012 *)


PROG

(PARI) sqrt(9/8) \\ Charles R Greathouse IV, Nov 26 2014
(MAGMA) SetDefaultRealField(RealField(100)); Sqrt(9/8); // G. C. Greubel, Aug 17 2018


CROSSREFS

Sequence in context: A092605 A180318 A004016 * A065442 A198752 A141462
Adjacent sequences: A093574 A093575 A093576 * A093578 A093579 A093580


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein, Apr 01 2004


STATUS

approved



