login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180318
Expansion of a(-q) in powers of q where a(q) is a cubic AGM function.
3
1, -6, 0, -6, 6, 0, 0, -12, 0, -6, 0, 0, 6, -12, 0, 0, 6, 0, 0, -12, 0, -12, 0, 0, 0, -6, 0, -6, 12, 0, 0, -12, 0, 0, 0, 0, 6, -12, 0, -12, 0, 0, 0, -12, 0, 0, 0, 0, 6, -18, 0, 0, 12, 0, 0, 0, 0, -12, 0, 0, 0, -12, 0, -12, 6, 0, 0, -12, 0, 0, 0, 0, 0, -12, 0
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 2 * a(q^4) - a(q) in powers of q where a() is a cubic AGM theta function.
Expansion of phi(-q) * phi(-q^3) - 4 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 14 2015
Expansion of theta_3(-q) * theta_3(-q^3) - theta_2(q) * theta_2(q^3) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = - (12)^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A004016(n).
G.f.: 1 + 6 * Sum_{k>0} (-x)^k/(1 + (-x)^k + x^(2*k)) = Sum_{j, k in Z} (-x)^(j*j + j*k + k*k).
a(2*n) = -6 * A033762(n). a(4*n) = A004016(n). a(4*n + 1) = -6 * A112604(n). a(4*n + 2) = 0. a(4*n + 3) = -6 * A112605(n). - Michael Somos, Sep 14 2015
EXAMPLE
G.f. = 1 - 6*q - 6*q^3 + 6*q^4 - 12*q^7 - 6*q^9 + 6*q^12 - 12*q^13 + 6*q^16 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 6 Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ n]}]]; (* Michael Somos, Sep 14 2015 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ -q]^3 - 9 q QPochhammer[ -q^9]^3) / QPochhammer[ -q^3], {q, 0, n}]; (* Michael Somos, Sep 14 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3] - EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Sep 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 6 * (-1)^n * sumdiv(n, d, kronecker(d, 3)))};
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 75); A[1] - 6*A[2] - 6*A[4] + 6*A[5]; /* Michael Somos, Sep 14 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 27 2010
STATUS
approved