OFFSET
0,2
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..16384
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 2 * a(q^4) - a(q) in powers of q where a() is a cubic AGM theta function.
Expansion of phi(-q) * phi(-q^3) - 4 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 14 2015
Expansion of theta_3(-q) * theta_3(-q^3) - theta_2(q) * theta_2(q^3) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = - (12)^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A004016(n).
G.f.: 1 + 6 * Sum_{k>0} (-x)^k/(1 + (-x)^k + x^(2*k)) = Sum_{j, k in Z} (-x)^(j*j + j*k + k*k).
a(2*n) = -6 * A033762(n). a(4*n) = A004016(n). a(4*n + 1) = -6 * A112604(n). a(4*n + 2) = 0. a(4*n + 3) = -6 * A112605(n). - Michael Somos, Sep 14 2015
EXAMPLE
G.f. = 1 - 6*q - 6*q^3 + 6*q^4 - 12*q^7 - 6*q^9 + 6*q^12 - 12*q^13 + 6*q^16 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 6 Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ n]}]]; (* Michael Somos, Sep 14 2015 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ -q]^3 - 9 q QPochhammer[ -q^9]^3) / QPochhammer[ -q^3], {q, 0, n}]; (* Michael Somos, Sep 14 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3] - EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Sep 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 6 * (-1)^n * sumdiv(n, d, kronecker(d, 3)))};
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 75); A[1] - 6*A[2] - 6*A[4] + 6*A[5]; /* Michael Somos, Sep 14 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 27 2010
STATUS
approved