login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263136
Expansion of Product_{k>=1} 1/(1-x^(4*k-1))^k.
7
1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 2, 3, 1, 2, 6, 5, 2, 6, 11, 7, 6, 15, 21, 12, 15, 30, 34, 22, 35, 58, 59, 43, 70, 108, 95, 85, 142, 187, 161, 167, 263, 318, 274, 318, 480, 534, 471, 595, 836, 879, 819, 1081, 1433, 1442, 1429, 1915, 2391, 2365, 2483, 3314, 3947
OFFSET
0,8
LINKS
FORMULA
G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(4*j))^2).
a(n) ~ Zeta(3)^(53/288) * exp(d41 - Pi^4/(6912*Zeta(3)) + Pi^2 * n^(1/3) / (48*Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3)/4) / (sqrt(3*Pi) * 2^(101/96) * n^(197/288)), where d41 = A263176 = Integral_{x=0..infinity} exp(-3*x)/(x*(1 - exp(-4*x))^2) - 1/(16*x^3) - 1/(16*x^2) + 5/(96*x*exp(x)) = -0.158924147180165035059952001737321408554746599955833696821824808027... .
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
`if`(irem(d+4, 4, 'r')=3, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # after Alois P. Heinz
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1-x^(4k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(4*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 10 2015
STATUS
approved