login
A005813
Molien series for 6-dimensional complex representation of double cover of J2.
1
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 3, 1, 4, 2, 5, 5, 7, 4, 10, 8, 12, 12, 16, 13, 24, 21, 27, 27, 35, 34, 48, 45, 54, 57, 72, 70, 90, 88, 104, 112, 132, 132, 159, 162, 188, 199, 228, 230, 270, 281, 316, 333, 373, 384, 441, 458, 506, 532, 590, 613
OFFSET
0,13
REFERENCES
J. H. Conway and N. J. A. Sloane, circa 1977.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 1, 0, 1, 0, 0, -1, -1, -1, 0, -1, 0, 1, 0, 1, -1, 0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 1, 0, -1, 0, -1, -1, -1, 0, 0, 1, 0, 1, 1, 0, 0, -1).
FORMULA
a(n) ~ 1/2268000*n^5 + 1/151200*n^4 + 17/453600*n^3 (sequence without interleaved zeros). - Ralf Stephan, Apr 29 2014
G.f.: (1 -x^3 -x^4 +x^10 +x^11 +x^12 +x^16 -x^19 -x^23 +x^26 +x^30 +x^31 +x^32 -x^38 -x^39 +x^42)/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^10)*(1-x^15)). - G. C. Greubel, Feb 06 2020
MAPLE
# p/q = 1 +x^12 +x^20 +2*x^24 +x^28 +..., where
p := x^140 +x^110 +x^108 +x^106 +2*x^104 +2*x^102 +3*x^100 +3*x^98 +3*x^96 +3*x^94 +4*x^92 +4*x^90 +4*x^88 +4*x^86 +4*x^84 +4*x^82 +4*x^80 +4*x^78 +3*x^76 +4*x^74 +3*x^72 +4*x^70 +3*x^68 +4*x^66 +3*x^64 +4*x^62 +4*x^60 +4*x^58 +4*x^56 +4*x^54 +4*x^52 +4*x^50 +4*x^48 +3*x^46 +3*x^44 +3*x^42 +3*x^40 +2*x^38 +2*x^36 +x^34 +x^32 +x^30 +1;
q := (1-x^12)*(1-x^20)*(1-x^24)*(1-x^28)*(1-x^30)*(1-x^32);
seq(coeff(series(p/q, x, 2*n+1), x, 2*n), n=0..60);
MATHEMATICA
CoefficientList[Series[(1-x^3-x^4+x^10+x^11+x^12+x^16-x^19-x^23+x^26+x^30+x^31 +x^32-x^38-x^39+x^42)/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^10)*(1-x^15)), {x, 0, 60}], x] (* G. C. Greubel, Feb 06 2020 *)
PROG
(PARI) Vec( (1-x^3-x^4+x^10+x^11+x^12+x^16-x^19-x^23+x^26+x^30+x^31 +x^32-x^38-x^39+x^42)/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^10)*(1-x^15)) +O('x^60) ) \\ G. C. Greubel, Feb 06 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x^3-x^4+x^10 +x^11+x^12+x^16-x^19-x^23+x^26+x^30+x^31 +x^32-x^38-x^39+x^42)/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^10)*(1-x^15)) )); // G. C. Greubel, Feb 06 2020
(Sage)
def A005813_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^3-x^4+x^10+x^11+x^12+x^16-x^19-x^23+x^26+x^30+x^31 +x^32-x^38-x^39+x^42)/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^10)*(1-x^15)) ).list()
A005813_list(60) # G. C. Greubel, Feb 06 2020
CROSSREFS
Sequence in context: A263136 A080018 A079686 * A049262 A374748 A145201
KEYWORD
nonn,easy,nice
STATUS
approved