login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145201
Triangle read by rows: T(n,k) = S(n,k) mod n, where S(n,k) = Stirling numbers of the first kind.
1
0, 1, 1, 2, 0, 1, 2, 3, 2, 1, 4, 0, 0, 0, 1, 0, 4, 3, 1, 3, 1, 6, 0, 0, 0, 0, 0, 1, 0, 4, 4, 1, 0, 2, 4, 1, 0, 0, 8, 0, 3, 0, 6, 0, 1, 0, 6, 0, 0, 5, 3, 0, 0, 5, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 6, 11, 6, 3, 6, 5, 6, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0, 0, 0, 0, 7, 5, 7, 7, 7, 7, 7
OFFSET
1,4
COMMENTS
The triangle T(n,k) contains many zeros. The distribution of nonzero entries is quite chaotic, but shows regular patterns, too, e.g.:
1) T(n,1) > 0 for n prime or n=4; T(n,1)=0 else
2) T(5k,k) > 0 for all k
More generally, it seems that:
3) T(pk,k) > 0 for k>0 and primes p
The following table depicts the zero (-) and nonzero (x) entries for the first 80 rows of the triangle:
-
xx
x-x
xxxx
x---x
-xxxxx
x-----x
-xxx-xxx
--x-x-x-x
-x--xx--xx
x---------x
---xxxxxxxxx
x-----------x
-x----xxxxxxxx
--x-x-x-x-x-x-x
-----xxx-x-x-xxx
x---------------x
-----x-xxx-x-x-xxx
x-----------------x
---x---xxxxx-x-xxxxx
--x---x-x---x-x---x-x
-x--------xxxx----xxxx
x---------------------x
-------x-xxx-xxx-xxx-xxx
----x---x---x---x---x---x
-x----------xx--xx--xx--xx
--------x-x-x-x-x-x-x-x-x-x
---x-----x--xxxxxxxxxxxxxxxx
x---------------------------x
-----x---x-x--xxxxxxxxxxxxxxxx
x-----------------------------x
-------------xxx-x-x-x-x-x-x-xxx
--x-------x-x-x-------x-----x-x-x
-x--------------xx--------------xx
----x-x---x---x-x-----x---x-x-x---x
-----------x-x-xxxxx---x-x-x-x-xxxxx
x-----------------------------------x
-x----------------xxxx------------xxxx
--x---------x-x---x-x-----x---x-x---x-x
-------x---x---x-xxx-xxx---x-x-x-xxx-xxx
x---------------------------------------x
-----x-----x-x-x-x-xxx-xxx---x-x-x-xxx-xxx
x-----------------------------------------x
---x---------x------xxxxxxxx-x-x-x-xxxxxxxxx
--------x---x-x-x-x-x-x-x-x-x---x-x-x-x-x-x-x
-x--------------------xxxxxxxx--------xxxxxxxx
x---------------------------------------------x
---------------x-x---xxx-x-x-xxx-x-x--xx-x-x-xxx
------x-----x-----x-----x-----x-----x-----x-----x
---------x---x---x---x--xx---x--xx---x--xx---x--xx
--x-------------x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
---x-----------x--------xxxx-x-xxxxx---xxxxx-x-xxxxx
x---------------------------------------------------x
-----------------x-x-x-x-xxxxx-x-xxxxx-x-xxxxx-x-xxxxx
----x-----x---x---------x-----x---x---------x-----x---x
-------x-----x-----------xxx-xxx--xx-xxx-xxx-xxx-xxx-xxx
--x---------------x-x---------------x-x---------------x-x
-x--------------------------xx--xx--xx--xx--xx--xx--xx--xx
x---------------------------------------------------------x
-----------x---x---x-x-x----xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x-----------------------------------------------------------x
-x----------------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
--------x-----x-----x-x-x-x-----x-----x-x-x-x-----x-----x-x-x-x
-----------------------------xxx-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xxx
----x-------x---x---x---x---x---x---x---x---x-------x---x---x---x
-----x---------x-----x-x-x-x-x--xx-x---x-x---x-x-------x-x-x---xxx
x-----------------------------------------------------------------x
---x---------------x------------xxxx-------------x-x------------xxxx
--x-------------------x-x-x-x-x-x-------x-x-x-x-x-x-------x-x-x-x-x-x
---------x---x-x-x---x---x-x-x---xxxxx---x---x---x-x-x---x---x-x-xxxxx
x---------------------------------------------------------------------x
-----------------------x-x-x-x-x-xxx-xxx-x-x-x-x-x-x-x-x---x-x-x-xxx-xxx
x-----------------------------------------------------------------------x
-x----------------------------------xx--xx--------------------------xx--xx
--------------x---x---x-x-x---x-x-x-x-x---x-x-x-x-x---x-x-x-x-x---x-x-x-x-x
---x-----------------x--------------xxxxxxxx---------x-x-x-x--------xxxxxxxx
------x---x-----x-----x---x-x-----x-x---------x-----x---x-x-----x-x---x-----x
-----x-----------x-------x-x-x-x-x-x-xxxxxxxxx-x-x-x-x-x-x-x-x-x-x-x-xxxxxxxxx
x-----------------------------------------------------------------------------x
---------------x---x---------------x-xxx-x-x-xxx---x---x-x-x-x-x---x-xxx-x-x-xxx
SUM(A057427(a(k)): 1<=k<=n) = A005127(n). - Reinhard Zumkeller, Jul 04 2009
FORMULA
T(n,k) = S(n,k) mod n, where S(n,k) = Stirling numbers of the first kind.
EXAMPLE
Triangle starts:
0;
1, 1;
2, 0, 1;
2, 3, 2, 1;
4, 0, 0, 0, 1;
0, 4, 3, 1, 3, 1;
6, 0, 0, 0, 0, 0, 1;
....
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(stirling(n, k, 1) % n, ", "); ); print(); ); } \\ Michel Marcus, Aug 10 2015
CROSSREFS
Cf. A000040, A008275, A061006 (first column).
Sequence in context: A005813 A049262 A374748 * A323671 A340707 A284265
KEYWORD
nonn,tabl
AUTHOR
Tilman Neumann, Oct 04 2008, Oct 06 2008
STATUS
approved