|
|
A145202
|
|
Primes of form 4*n^2 + 4*n + 653.
|
|
4
|
|
|
653, 661, 677, 701, 733, 773, 821, 877, 941, 1013, 1093, 1181, 1277, 1381, 1493, 1613, 1741, 1877, 2333, 2677, 2861, 3253, 3461, 3677, 4133, 4373, 4621, 4877, 5413, 5693, 5981, 6277, 6581, 7213, 7541, 7877, 8221, 8573, 8933, 9677, 10061, 10453, 10853
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
First 18 terms are for n from 0 through 17, next terms are for n = 20, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, ...
The sequence of n such that 4*n^2 + 4*n + 653 is composite starts 18, 19, 21, 24, 28, 33, 39, 46, 54, 60, 61, 62, 63, 65, 67, 72, 73, 75, 81, 82, 84, 85, 86, 93, 95, 96, 100, ...
|
|
LINKS
|
|
|
EXAMPLE
|
a(18) = 4*17^2 + 4*17 + 653 = 1877.
|
|
MATHEMATICA
|
Select[Table[4 n^2 + 4 n + 653, {n, 0, 100}], PrimeQ] (* Vincenzo Librandi, Apr 21 2014 *)
|
|
PROG
|
(PARI) {for(n=0, 50, if(isprime(p=4*n^2+4*n+653), print1(p, ", ")))}
(Magma) [a: n in [0..100] | IsPrime(a) where a is 4*n^2 + 4*n + 653]; // Vincenzo Librandi, Apr 21 2014
|
|
CROSSREFS
|
A145125 is essentially the same sequence.
Cf. A005846 (primes of form n^2 + n + 41).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|