login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000414 Numbers that are the sum of 4 nonzero squares. 50
4, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

Index entries for sequences related to sums of squares

FORMULA

a(n) = n + O(log n). - Charles R Greathouse IV, Sep 03 2014

EXAMPLE

From David A. Corneth, Aug 01 2020: (Start)

1608 is in the sequence as 1608 = 18^2 + 20^2 + 20^2 + 22^2.

2140 is in the sequence as 2140 = 21^2 + 21^2 + 23^2 + 27^2.

3298 is in the sequence as 3298 = 25^2 + 26^2 + 29^2 + 34^2. (End)

MATHEMATICA

q=16; lst={}; Do[Do[Do[Do[z=a^2+b^2+c^2+d^2; If[z<=(q^2)+3, AppendTo[lst, z]], {d, q}], {c, q}], {b, q}], {a, q}]; Union@lst (*Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)

PROG

(PARI) is(n)=my(k=if(n, n/4^valuation(n, 4), 2)); k!=2 && k!=6 && k!=14 && !setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014

(Python)

limit = 10026 # 10000th term in b-file

from functools import lru_cache

nzs = [k*k for k in range(1, int(limit**.5)+2) if k*k + 3 <= limit]

nzss = set(nzs)

@lru_cache(maxsize=None)

def ok(n, m): return n in nzss if m == 1 else any(ok(n-s, m-1) for s in nzs)

print([n for n in range(4, limit+1) if ok(n, 4)]) # Michael S. Branicky, Apr 07 2021

(Python)

from itertools import count, islice

def A000414_gen(startvalue=0): # generator of terms >= startvalue

return filter(lambda n:not(n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2, 6, 14}), count(max(startvalue, 0)))

A000414_list = list(islice(A000414_gen(), 30)) # Chai Wah Wu, Jul 09 2022

CROSSREFS

Cf. A000534 (complement).

A###### (x, y): Numbers that are the form of x nonzero y-th powers.

Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Sequence in context: A237707 A211642 A127958 * A025357 A222949 A144020

Adjacent sequences: A000411 A000412 A000413 * A000415 A000416 A000417

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

EXTENSIONS

corrected 6/95

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)