|
|
A000414
|
|
Numbers that are the sum of 4 nonzero squares.
|
|
50
|
|
|
4, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
|
|
LINKS
|
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Index entries for sequences related to sums of squares
|
|
FORMULA
|
a(n) = n + O(log n). - Charles R Greathouse IV, Sep 03 2014
|
|
EXAMPLE
|
From David A. Corneth, Aug 01 2020: (Start)
1608 is in the sequence as 1608 = 18^2 + 20^2 + 20^2 + 22^2.
2140 is in the sequence as 2140 = 21^2 + 21^2 + 23^2 + 27^2.
3298 is in the sequence as 3298 = 25^2 + 26^2 + 29^2 + 34^2. (End)
|
|
MATHEMATICA
|
q=16; lst={}; Do[Do[Do[Do[z=a^2+b^2+c^2+d^2; If[z<=(q^2)+3, AppendTo[lst, z]], {d, q}], {c, q}], {b, q}], {a, q}]; Union@lst (*Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
|
|
PROG
|
(PARI) is(n)=my(k=if(n, n/4^valuation(n, 4), 2)); k!=2 && k!=6 && k!=14 && !setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014
(Python)
limit = 10026 # 10000th term in b-file
from functools import lru_cache
nzs = [k*k for k in range(1, int(limit**.5)+2) if k*k + 3 <= limit]
nzss = set(nzs)
@lru_cache(maxsize=None)
def ok(n, m): return n in nzss if m == 1 else any(ok(n-s, m-1) for s in nzs)
print([n for n in range(4, limit+1) if ok(n, 4)]) # Michael S. Branicky, Apr 07 2021
(Python)
from itertools import count, islice
def A000414_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:not(n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2, 6, 14}), count(max(startvalue, 0)))
A000414_list = list(islice(A000414_gen(), 30)) # Chai Wah Wu, Jul 09 2022
|
|
CROSSREFS
|
Cf. A000534 (complement).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A237707 A211642 A127958 * A025357 A222949 A144020
Adjacent sequences: A000411 A000412 A000413 * A000415 A000416 A000417
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane and J. H. Conway
|
|
EXTENSIONS
|
corrected 6/95
|
|
STATUS
|
approved
|
|
|
|