login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003381
Numbers that are the sum of 3 nonzero 8th powers.
32
3, 258, 513, 768, 6563, 6818, 7073, 13123, 13378, 19683, 65538, 65793, 66048, 72098, 72353, 78658, 131073, 131328, 137633, 196608, 390627, 390882, 391137, 397187, 397442, 403747, 456162, 456417, 462722, 521697, 781251, 781506, 787811, 846786
OFFSET
1,1
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..8000 (replacing an earlier b-file that missed terms).
MAPLE
A003381 := proc(nmax::integer)
local xyzmax, ins, x, x8, y, y8, z, z8 ;
xyzmax := ceil(root[8](nmax/3)) ;
a := {} ;
for x from 1 to xyzmax do
x8 := x^8 ;
if 3*x8 > nmax then
break;
end if;
for y from x do
y8 := y^8 ;
if x8+2*y8 > nmax then
break;
end if;
for z from y do
z8 := z^8 ;
if x8+y8+z8 > nmax then
break;
end if;
if x8+y8+z8 <= nmax then
a := a union {x8+y8+z8} ;
end if;
end do:
end do:
end do:
sort(convert(a, list)) ;
end proc:
nmax := 6755626171875 ;
L:= A003381(nmax) ;
LISTTOBFILE(L, "b003381.txt", 1) ; # R. J. Mathar, Aug 01 2020
MATHEMATICA
kmax = 4*10^12;
m = kmax^(1/8) // Ceiling;
Table[k = x^8 + y^8 + z^8; If[k <= kmax, k, Nothing], {x, 1, m}, {y, x, m}, {z, y, m}] // Flatten // Union (* Jean-François Alcover, May 02 2023 *)
CROSSREFS
Cf. A001016 (8th powers).
Sequence in context: A232545 A177748 A283018 * A219550 A319587 A058451
KEYWORD
nonn
STATUS
approved