OFFSET
1,1
COMMENTS
These values have been taken from the Buekenhout (1998) paper (see link). During the unfolding of these solid nets along their common face, the possibility of any overlapping is ignored.
This finite sequence is fully determined but a(5) and a(6) are too large to be displayed in data. See formulas below to calculate these terms.
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..6
F. Buekenhout and M. Parker, The number of nets of the regular convex polytopes in dimension >= 4, Discrete Mathematics 186 (1998) 69-94.
FORMULA
a(1) = 3;
a(2) = (82944 + 12*16 + 24*8 + 4*2304 + 6*128 + 12*96 + 12*192 + 12*288)/(2^7 * 3) = 261;
a(3) = 2^5*(2^7 * 3^3 + 1 + 3^2) = 110912;
a(4) = 6*(2^19 * 5688888889 + 347) = 17895697067018274;
a(5) = 2^7 * 5^2 * 7^3 * (2^114 * 3^78 * 5^20 * 7^33 + 2^47 * 3^18 * 5^2 * 7^12 * 53^5 * 2311^3 + 239^2 * 3931^2);
a(6) = 2^188 * 3^102 * 5^20 * 7^36 * 11^48 * 23^48 * 29^30.
MATHEMATICA
{3, (82944+12*16+24*8+4*2304+6*128+12*96+12*192+12*288)/(2^7*3), 2^5(2^7*3^3+1+3^2), 6(2^19*5688888889+347), 2^7*5^2*7^3(2^114*3^78*5^20*7^33+2^47*3^18*5^2*7^12*53^5*2311^3+239^2*3931^2), 2^188*3^102*5^20*7^36*11^48*23^48*29^30}
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Frank M Jackson, Sep 23 2018
STATUS
approved