login
A319587
The number of distinct solid nets of the six convex regular 4D-polytopes in the order of their 3D-cell count.
1
3, 261, 110912, 17895697067018274
OFFSET
1,1
COMMENTS
These values have been taken from the Buekenhout (1998) paper (see link). During the unfolding of these solid nets along their common face, the possibility of any overlapping is ignored.
This finite sequence is fully determined but a(5) and a(6) are too large to be displayed in data. See formulas below to calculate these terms.
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..6
F. Buekenhout and M. Parker, The number of nets of the regular convex polytopes in dimension >= 4, Discrete Mathematics 186 (1998) 69-94.
FORMULA
a(1) = 3;
a(2) = (82944 + 12*16 + 24*8 + 4*2304 + 6*128 + 12*96 + 12*192 + 12*288)/(2^7 * 3) = 261;
a(3) = 2^5*(2^7 * 3^3 + 1 + 3^2) = 110912;
a(4) = 6*(2^19 * 5688888889 + 347) = 17895697067018274;
a(5) = 2^7 * 5^2 * 7^3 * (2^114 * 3^78 * 5^20 * 7^33 + 2^47 * 3^18 * 5^2 * 7^12 * 53^5 * 2311^3 + 239^2 * 3931^2);
a(6) = 2^188 * 3^102 * 5^20 * 7^36 * 11^48 * 23^48 * 29^30.
MATHEMATICA
{3, (82944+12*16+24*8+4*2304+6*128+12*96+12*192+12*288)/(2^7*3), 2^5(2^7*3^3+1+3^2), 6(2^19*5688888889+347), 2^7*5^2*7^3(2^114*3^78*5^20*7^33+2^47*3^18*5^2*7^12*53^5*2311^3+239^2*3931^2), 2^188*3^102*5^20*7^36*11^48*23^48*29^30}
CROSSREFS
Sequence in context: A283018 A003381 A219550 * A058451 A230373 A003761
KEYWORD
nonn,fini
AUTHOR
Frank M Jackson, Sep 23 2018
STATUS
approved