login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219550
Sum(m^p, m=1..p-1)/p as p runs through the odd primes.
2
3, 260, 53823, 12942210875, 11901444483396, 25627001801054931008, 55413915436873048932459, 490667517005738962388828685983, 48588952813858892791005036793649985985124, 303307728036900627681487165427498812641117375, 158544898951978777519612048992784361843596346824881328548
OFFSET
1,1
COMMENTS
Always an integer: for an elementary proof that Sum(m^k,m=1..p-1)/p is an integer if p is prime and p-1 does not divide k (and a discussion of other proofs), see MacMillan and Sondow 2011. Applications are in Sondow and MacMillan 2011.
For (Sum(m^(p-1), m=1..p-1)+1)/p as p runs through the primes, see A055030.
For Sum(m^p, m=1..p-1) / p^2 as p runs through the odd primes, see A294507.
LINKS
K. MacMillan and J. Sondow, Proofs of power sum and binomial coefficient congruences via Pascal's identity, Amer. Math. Monthly, 118 (2011), 549-551.
J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.
EXAMPLE
a(1) = (1^3 + 2^3)/3 = (1 + 8)/3 = 3.
MATHEMATICA
Array[Sum[m^#, {m, # - 1}]/# &@ Prime@ # &, 11, 2] (* Michael De Vlieger, Nov 04 2017 *)
CROSSREFS
Sequence in context: A177748 A283018 A003381 * A319587 A058451 A230373
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Dec 04 2012
STATUS
approved