The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219550 Sum(m^p, m=1..p-1)/p as p runs through the odd primes. 2
 3, 260, 53823, 12942210875, 11901444483396, 25627001801054931008, 55413915436873048932459, 490667517005738962388828685983, 48588952813858892791005036793649985985124, 303307728036900627681487165427498812641117375, 158544898951978777519612048992784361843596346824881328548 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Always an integer: for an elementary proof that Sum(m^k,m=1..p-1)/p is an integer if p is prime and p-1 does not divide k (and a discussion of other proofs), see MacMillan and Sondow 2011. Applications are in Sondow and MacMillan 2011. For (Sum(m^(p-1), m=1..p-1)+1)/p as p runs through the primes, see A055030. For Sum(m^p, m=1..p-1) / p^2 as p runs through the odd primes, see A294507. LINKS K. MacMillan and J. Sondow, Proofs of power sum and binomial coefficient congruences via Pascal's identity, Amer. Math. Monthly, 118 (2011), 549-551. J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34. EXAMPLE a(1) = (1^3 + 2^3)/3 = (1 + 8)/3 = 3. MATHEMATICA Array[Sum[m^#, {m, # - 1}]/# &@ Prime@ # &, 11, 2] (* Michael De Vlieger, Nov 04 2017 *) CROSSREFS Cf. A055030, A294507. Sequence in context: A177748 A283018 A003381 * A319587 A058451 A230373 Adjacent sequences:  A219547 A219548 A219549 * A219551 A219552 A219553 KEYWORD nonn AUTHOR Jonathan Sondow, Dec 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 11:52 EDT 2020. Contains 334840 sequences. (Running on oeis4.)