The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055030 (Sum(m^(p-1),m=1..p-1)+1)/p as p runs through the primes. 11
 1, 2, 71, 9596, 1355849266, 1032458258547, 1653031004194447737, 3167496749732497119310, 22841077183004879532481321652, 1768861419039838982256898243427529138091, 10293527624511391856267274608237685758691696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It is conjectured that (Sum(m^(n-1),m=1..n-1)+1)/n is an integer iff n is 1 or a prime. Always an integer from little Fermat theorem. Converse is conjectured to be true: if p | (1+1^(p-1)+2^(p-1)+3^(p-1)+...+(p-1)^(p-1)) and p > 1, then p is prime. That was checked by Giuga up to p <= 10^1000. [Benoit Cloitre, Jun 09 2002] For Sum(m^p, m=1..p-1)/p as p runs through the odd primes, see A219550. - Jonathan Sondow, Oct 31 2017 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, A17. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..76 K. MacMillan and J. Sondow, Proofs of power sum and binomial coefficient congruences via Pascal's identity, Amer. Math. Monthly, 118 (2011), 549-551. FORMULA a(n) = (1+A225578(n))/A000040(n). - R. J. Mathar, Jan 09 2017 MAPLE A055030 := proc(n) p := ithprime(n) ; add(m^(p-1), m=1..p-1) ; (1+%)/p ; end proc: seq(A055030(n), n=1..5) ; # R. J. Mathar, Jan 09 2017 MATHEMATICA Array[(Sum[m^(# - 1), {m, # - 1}] + 1)/# &@ Prime@ # &, 11] (* Michael De Vlieger, Nov 04 2017 *) PROG (PARI) for(n=1, 20, print1((1+sum(i=1, prime(n)-1, i^(prime(n)-1)))/prime(n), ", ")) /* Benoit Cloitre, Jun 09 2002*/ CROSSREFS Cf. A055031, A055032, A055023, A201560, A204187, A219550, A294507. Sequence in context: A221959 A221553 A071871 * A361688 A185120 A217842 Adjacent sequences: A055027 A055028 A055029 * A055031 A055032 A055033 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 11 2000 EXTENSIONS Comments corrected by Jonathan Sondow, Jan 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 19:05 EDT 2024. Contains 375929 sequences. (Running on oeis4.)