login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055027 Number of inequivalent Gaussian primes of successive norms (indexed by A055025). 3
1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).

Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-i).

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, A16.

L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

LINKS

Table of n, a(n) for n=1..87.

Index entries for Gaussian integers and primes

EXAMPLE

There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i).

MATHEMATICA

norms = Union[ #*Conjugate[#]& [ Select[ Flatten[ Table[a + b*I, {a, 0, 31}, {b, 0, 31}]], PrimeQ[#, GaussianIntegers -> True] &]]]; f[norm_] := (Clear[a, b]; primes = {a + b*I} /. {ToRules[ Reduce[a^2 + b^2 == norm, {a, b}, Integers]]}; primes //. {p1___, p2_, p3___, p4_, p5___} /; MatchQ[p2, (-p4 | I*p4 | -I*p4)] :> {p1, p2, p3, p5} // Length); A055027 = f /@ norms (* Jean-Fran├žois Alcover, Nov 30 2012 *)

CROSSREFS

Cf. A055025-A055029, A055664-...

Sequence in context: A297773 A043532 A043557 * A214574 A298071 A246920

Adjacent sequences:  A055024 A055025 A055026 * A055028 A055029 A055030

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Jun 09 2000

EXTENSIONS

More terms from Reiner Martin (reinermartin(AT)hotmail.com), Jul 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 23:51 EDT 2019. Contains 323597 sequences. (Running on oeis4.)