login
A055028
Number of Gaussian primes of norm n.
3
0, 0, 4, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0
OFFSET
0,3
COMMENTS
These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A16.
L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
FORMULA
a(n) = 4 * A055029(n). - Franklin T. Adams-Watters, May 05 2006
EXAMPLE
There are 8 Gaussian primes of norm 5, +-1 +- 2i and +-2 +- i, but only two inequivalent ones (2 +- i).
MAPLE
A055028 := proc(n::integer)
local c, a, b ;
c := 0 ;
for a from -n to n do
if issqr(n-a^2) then
b := sqrt(n-a^2) ;
if GaussInt[GIprime](a+b*I) and a^2+b^2=n then
if b = 0 then
c := c+1 ; # a+i*b and a-i*b
else
c := c+2 ; # a+i*b and a-i*b
end if;
end if;
end if;
end do:
c ;
end proc:
seq( A055028(n), n=0..50) ; # R. J. Mathar, Jul 22 2021
MATHEMATICA
a[n_ /; PrimeQ[n] && Mod[n, 4] == 1] = 8; a[2] = 4; a[n_ /; (p = Sqrt[n]; PrimeQ[p] && Mod[p, 4] == 3)] = 4; a[_] = 0; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2013, after Franklin T. Adams-Watters *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jun 09 2000
EXTENSIONS
More terms from Reiner Martin, Jul 20 2001
STATUS
approved