login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055023
a(n) = n/A055032(n).
9
1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 1, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 2, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 1, 1, 2, 1, 1, 53, 2, 1, 1, 3, 2, 59, 1, 61, 2, 1, 1, 1, 2, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79, 1, 1, 2, 83, 1, 1
OFFSET
1,2
COMMENTS
It is conjectured that this is n iff n is 1 or a prime.
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, A17.
LINKS
MATHEMATICA
Table[n/Denominator[(Sum[m^(n - 1), {m, n - 1}] + 1)/n], {n, 10}] (* Indranil Ghosh, May 17 2017 *)
PROG
(PARI) a(n) = n/denominator((sum(m=1, n - 1, m^(n - 1)) + 1)/n); \\ Indranil Ghosh, May 17 2017
(Python)
from sympy import Integer
def a(n): return Integer(n)/((sum(m**(n - 1) for m in range(1, n)) + 1)/Integer(n)).denominator() # Indranil Ghosh, May 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 11 2000
STATUS
approved