login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055022
Number of 1-punctured staircase polygons (by perimeter) with a hole of perimeter 4.
2
0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 92, 576, 3214, 16664, 82160, 390656, 1807781, 8192524, 36519556, 160645504, 699030226, 3014470024, 12901501696, 54863119744, 232022899306, 976598630968, 4093581923320, 17096805375360, 71176501409756
OFFSET
0,10
REFERENCES
Christoph Richard, Iwan Jensen, and Anthony J. Guttmann, Area distribution and scaling function for punctured polygons, Electronic journal of combinatorics 15 (2008), #R53. See Equation (23).
LINKS
A. J. Guttmann et al., Punctured polygons and polyominoes on the square lattice, arXiv:cond-mat/0003441 [cond-mat.stat-mech], 2000.
A. J. Guttmann et al., Punctured polygons and polyominoes on the square lattice, J. Physics A: Math. and Gen, 33 (9) (2000), 1735-1764.
FORMULA
G.f.: (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)/(2*(1 - 4*x)) - (1 - 6*x + 10*x^2 - 4*x^3)/(2*sqrt(1 - 4*x)). - N. J. A. Sloane, Sep 10 2024
D-finite with recurrence n*(n-8)*a(n) +2*(-4*n^2+35*n-45)*a(n-1) +8*(2*n-9)*(n-5)*a(n-2)=0. - R. J. Mathar, Aug 14 2012
For n>3, a(n) = 4^(n-4)-binomial(2n,n)(n-3)(n^2-5n+10)/(4(2n-1)(2n-3)(2n-5)). - Michael D. Weiner, Jan 17 2018
MAPLE
gf := (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)/(2*(1 - 4*x)) - (1 - 6*x + 10*x^2 - 4*x^3)/(2*sqrt(1 - 4*x)):
s := series(gf, x, 50):
for i from 0 to 50 do printf(`%d, `, coeff(s, x, i)) od:
MATHEMATICA
Join[{0, 0, 0, 0}, Table[4^(n - 4) - Binomial[2 n, n] (n - 3) (n^2 - 5 n + 10) / (4 (2 n - 1) (2 n - 3) (2 n - 5)), {n, 4, 50}]] (* Vincenzo Librandi, Jan 20 2018 *)
PROG
(Magma) [0, 0, 0, 0] cat [4^(n-4)-Binomial(2*n, n)*(n-3)*(n^2-5*n+10) div (4*(2*n-1)*(2*n-3)*(2*n-5)): n in [4..30]]; // Vincenzo Librandi, Jan 20 2018
CROSSREFS
Cf. A055024 (hole perimeter 6).
Sequence in context: A246585 A120990 A220330 * A220937 A221291 A044263
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, May 31 2000
STATUS
approved