|
|
A055022
|
|
Number of 1-punctured staircase polygons (by perimeter) with a hole of perimeter 4.
|
|
2
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 92, 576, 3214, 16664, 82160, 390656, 1807781, 8192524, 36519556, 160645504, 699030226, 3014470024, 12901501696, 54863119744, 232022899306, 976598630968, 4093581923320, 17096805375360, 71176501409756
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
LINKS
|
|
|
FORMULA
|
D-finite with recurrence n*(n-8)*a(n) +2*(-4*n^2+35*n-45)*a(n-1) +8*(2*n-9)*(n-5)*a(n-2)=0. - R. J. Mathar, Aug 14 2012
For n>3, a(n) = 4^(n-4)-binomial(2n,n)(n-3)(n^2-5n+10)/(4(2n-1)(2n-3)(2n-5)). - Michael D. Weiner, Jan 17 2018
|
|
MAPLE
|
gf := (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)/(2*(1 - 4*x)) - (1 - 6*x + 10*x^2 - 4*x^3)/(2*sqrt(1 - 4*x)):
s := series(gf, x, 50):
for i from 0 to 50 do printf(`%d, `, coeff(s, x, i)) od:
|
|
MATHEMATICA
|
Join[{0, 0, 0, 0}, Table[4^(n - 4) - Binomial[2 n, n] (n - 3) (n^2 - 5 n + 10) / (4 (2 n - 1) (2 n - 3) (2 n - 5)), {n, 4, 50}]] (* Vincenzo Librandi, Jan 20 2018 *)
|
|
PROG
|
(Magma) [0, 0, 0, 0] cat [4^(n-4)-Binomial(2*n, n)*(n-3)*(n^2-5*n+10) div (4*(2*n-1)*(2*n-3)*(2*n-5)): n in [4..30]]; // Vincenzo Librandi, Jan 20 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|