OFFSET
0,10
REFERENCES
Christoph Richard, Iwan Jensen, and Anthony J. Guttmann, Area distribution and scaling function for punctured polygons, Electronic journal of combinatorics 15 (2008), #R53. See Equation (23).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..500
A. J. Guttmann et al., Punctured polygons and polyominoes on the square lattice, arXiv:cond-mat/0003441 [cond-mat.stat-mech], 2000.
A. J. Guttmann et al., Punctured polygons and polyominoes on the square lattice, J. Physics A: Math. and Gen, 33 (9) (2000), 1735-1764.
FORMULA
G.f.: (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)/(2*(1 - 4*x)) - (1 - 6*x + 10*x^2 - 4*x^3)/(2*sqrt(1 - 4*x)). - N. J. A. Sloane, Sep 10 2024
D-finite with recurrence n*(n-8)*a(n) +2*(-4*n^2+35*n-45)*a(n-1) +8*(2*n-9)*(n-5)*a(n-2)=0. - R. J. Mathar, Aug 14 2012
For n>3, a(n) = 4^(n-4)-binomial(2n,n)(n-3)(n^2-5n+10)/(4(2n-1)(2n-3)(2n-5)). - Michael D. Weiner, Jan 17 2018
MAPLE
gf := (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)/(2*(1 - 4*x)) - (1 - 6*x + 10*x^2 - 4*x^3)/(2*sqrt(1 - 4*x)):
s := series(gf, x, 50):
for i from 0 to 50 do printf(`%d, `, coeff(s, x, i)) od:
MATHEMATICA
Join[{0, 0, 0, 0}, Table[4^(n - 4) - Binomial[2 n, n] (n - 3) (n^2 - 5 n + 10) / (4 (2 n - 1) (2 n - 3) (2 n - 5)), {n, 4, 50}]] (* Vincenzo Librandi, Jan 20 2018 *)
PROG
(Magma) [0, 0, 0, 0] cat [4^(n-4)-Binomial(2*n, n)*(n-3)*(n^2-5*n+10) div (4*(2*n-1)*(2*n-3)*(2*n-5)): n in [4..30]]; // Vincenzo Librandi, Jan 20 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, May 31 2000
STATUS
approved