The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126773 a(n) = largest divisor of n which is coprime to the largest proper divisor of n. (a(1)=1.). 5
 1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 1, 13, 2, 3, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 2, 31, 1, 3, 2, 5, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 1, 1, 2, 3, 1, 53, 2, 5, 1, 3, 2, 59, 1, 61, 2, 1, 1, 5, 2, 67, 1, 3, 2, 71, 1, 73, 2, 3, 1, 7, 2, 79, 1, 1, 2, 83, 1, 5, 2, 3, 1, 89, 2, 7, 1, 3, 2, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also the denominator of the ratio of the largest proper divisor to the least prime divisor of n, which can be thought of as the ratio of the 2nd largest divisor to the 2nd least divisor of n. - Michel Marcus, Feb 27 2017 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA For n >= 2: Let p =A020639(n) be the smallest prime dividing n. If p^2 divides n, then a(n)=1. Otherwise, a(n) = p. EXAMPLE The largest proper divisor of 30 is A032742(30) = 15. So a(30)= 2, because 2 is the largest divisor of 30 which is coprime to 15. MAPLE A126773 := proc(n)     local p ;     p := A020639(n) ;     if modp(n, p^2) = 0 then         1 ;     else         p ;     end if; end proc: seq(A126773(n), n=1..100) ; # R. J. Mathar, Mar 03 2017 MATHEMATICA f[n_] := Block[{d = Divisors[n]}, If[n < 2, 1, Max @@ Select[d, GCD[ #, d[[ -2]]] == 1 &]]]; Array[f, 100] (* Ray Chandler, Feb 26 2007 *) PROG (PARI) a(n) = if (n==1, 1, my(d = divisors(n)); k = #d; while (gcd(d[k], d[#d-1]) != 1, k--); d[k]); \\ Michel Marcus, Feb 27 2017 (PARI) a(n) = if (n==1, 1, my(d = divisors(n)); denominator(d[#d-1]/d[2])); \\ Michel Marcus, Feb 27 2017 (PARI) a(n)=if(n==1, return(1)); my(f=factor(n)[1, ]); if(f[2]>1, 1, f[1]) \\ Charles R Greathouse IV, Feb 27 2017 CROSSREFS Sequence in context: A055023 A323071 A340078 * A326691 A277698 A134194 Adjacent sequences:  A126770 A126771 A126772 * A126774 A126775 A126776 KEYWORD nonn AUTHOR Leroy Quet, Feb 17 2007 EXTENSIONS Extended by Ray Chandler, Feb 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)