The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326691 a(n) = n/denominator(Sum_{prime p | n} 1/p - 1/n). 4
 1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 3, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 30, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 3, 1, 2, 1, 1, 53, 2, 5, 7, 3, 2, 59, 1, 61, 2, 1, 1, 1, 6, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Denominator(Sum_{prime p | n} 1/p - 1/n) is a factor of n, since all primes in the sum divide n. So a(n) is an integer. LINKS Wikipedia, Giuga number FORMULA a(n) = n/A326690(n). a(n) = n > 1 iff n is either a prime or a Giuga number A007850. a(n) = gcd(n, 1+((n-1)*A003415(n))). [Conjectured, after an empirical formula found by LODA miner. This holds at least up to n=2^27] - Antti Karttunen, Mar 15 2021 EXAMPLE a(18) = 18/denominator(Sum_{prime p | 18} 1/p - 1/18) = 18/denominator(1/2 + 1/3 - 1/18) = 18/denominator(7/9) = 18/9 = 2. a(30) = 30/denominator(Sum_{prime p | 30} 1/p - 1/30) = 30/denominator(1/2 + 1/3 + 1/5 - 1/30) = 30/denominator(1/1) = 30/1 = 30, and 30 is a Giuga number. MATHEMATICA PrimeFactors[n_] := Select[Divisors[n], PrimeQ]; f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n]; Table[n/f[n], {n, 79}] PROG (PARI) A326691(n) = (n/A326690(n)); \\ Antti Karttunen, Mar 15 2021 CROSSREFS Cf. A003415, A007850, A326689, A326690, A326692, A326715. Sequence in context: A323071 A340078 A126773 * A277698 A134194 A308707 Adjacent sequences:  A326688 A326689 A326690 * A326692 A326693 A326694 KEYWORD nonn AUTHOR Jonathan Sondow, Jul 20 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 05:24 EDT 2021. Contains 347577 sequences. (Running on oeis4.)