login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007850 Giuga numbers: composite numbers n such that p divides n/p - 1 for every prime divisor p of n. 49
30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

There are no other Giuga numbers with 8 or fewer prime factors. I did an exhaustive search using a PARI script which implemented Borwein and Girgensohn's method for finding n factor solutions given n - 2 factors. - Fred Schneider, Jul 04 2006

One further Giuga number is known with 10 prime factors, namely:

420001794970774706203871150967065663240419575375163060922876441614\

2557211582098432545190323474818 =

2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 * 8491659218261819498490029296021 * 58254480569119734123541298976556403 but this may not be the next term. (See the Butske et al. paper.)

Conjecture: Giuga numbers are the solution of the differential equation n' = n + 1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009

n is a Giuga number if and only if n' = a*n + 1 for some integer a > 0 (see our preprint in arXiv:1103.2298). - José María Grau Ribas, Mar 19 2011

A composite number n is a Giuga number if and only if Sum_{i = 1..n-1} i^phi(n) == -1 (mod n), where phi(n) = A000010(n). - Jonathan Sondow, Jan 03 2014

A composite number n is a Giuga number if and only if Sum_{prime p|n} 1/p = 1/n + an integer. (In fact, all known Giuga numbers n satisfy Sum_{prime p|n} 1/p = 1/n + 1.) - Jonathan Sondow, Jan 08 2014

The prime factors of a(n) are listed as n-th row of A236434. - M. F. Hasler, Jul 13 2015

Conjecture: let k = a(n) and k be the product of x(n) distinct prime factors where x(n) <= x(n+1). Then, for any even n, n/2 + 2 <= x(n) <= n/2 + 3 and, for any odd n, (n+1)/2 + 2 <= x(n) <= (n+1)/2 + 3. For any n > 1, there are y "old" distinct prime factors o(1)...o(y) such that o(1) = 2, o(2) = 3, and z "new" distinct prime factors n(1)...n(z) such that none of them - unlike the "old" ones - can be a divisor of a(q) while q < n; n(1) > o(y), y = x(n) - z >= 2, 2 <= z <= b where b is either 4, or 1/2*n. - Sergey Pavlov, Feb 24 2017

Conjecture: a composite n is a Giuga number if and only if Sum_{k=1..n-1} k^lambda(n) == -1 (mod n), where lambda(n) = A002322(n). - Thomas Ordowski and Giovanni Resta, Jul 25 2018

A composite number n is a Giuga number if and only if A326690(n) = 1. - Jonathan Sondow, Jul 19 2019

A composite n is a Giuga number if and only if n * A027641(phi(n)) == - A027642(phi(n)) (mod n^2). Note: Euler's phi function A000010 can be replaced by the Carmichael lambda function A002322. - Thomas Ordowski, Jun 07 2020

By von Staudt and Clausen theorem, a composite n is a Giuga number if and only if n * A027759(phi(n)) == A027760(phi(n)) (mod n^2). Note: Euler's phi function can be replaced by the Carmichael lambda function. - Thomas Ordowski, Aug 01 2020

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 30, pp 11, Ellipses, Paris 2008.

LINKS

Table of n, a(n) for n=1..12.

M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT], 2016.

D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's Conjecture on Primality, Amer. Math. Monthly 103, No. 1, 40-50 (1996).

J. M. Borwein and E. Wong, A Survey of Results Relating to Giuga's Conjecture on Primality, Vinet, Luc (ed.): Advances in Mathematical Sciences: CRM's 25 Years. Providence, RI: American Mathematical Society. CRM Proc. Lect. Notes. 11, 13-27 (1997).

William Butske, Lynda M. Jaje, and Daniel R. Mayernik, On the equation Sum_{p | N} 1/p + (1/N)=1, pseudoperfect numbers and perfectly weighted graphs, Math. Comp. 69 (2000), no. 229, 407-420.

José María Grau and Antonio M. Oller-Marcén, Giuga Numbers and the arithmetic derivative., arXiv:1103.2298 [math.NT], 2011; J. Int. Seq. 15 (2012) 12.4.1

José María Grau and Antonio M. Oller-Marcén, Generalizing Giuga's conjecture, arXiv:1103.3483 [math.NT], 2011.

J. M. Grau and A. M. Oller-Marcén, On the congruence sum_{j=1}^{n-1} j^{k(n-1)} == -1 (mod n); k-strong Giuga and k-Carmichael numbers, arXiv preprint arXiv:1311.3522 [math.NT], 2013.

J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.

John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.

Mersenne Forum, Giuga numbers

Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], May 04 2013.

R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, 124 (2017) 232-240; arXiv:math/1812.06566 [math.NT], 2018.

J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.

Eric Weisstein's World of Mathematics, Giuga Number.

Wikipedia, Agoh-Giuga conjecture

Wikipedia, Giuga number

FORMULA

Sum_{i = 1..a(n)-1} i^phi(a(n)) == -1 (mod a(n)). - Jonathan Sondow, Jan 03 2014

EXAMPLE

From M. F. Hasler, Jul 13 2015: (Start)

The prime divisors of 30 are {2, 3, 5}, and 2 divides 30/2-1 = 14, 3 divides 30/3-1 = 9, and 5 divides 30/5-1 = 5.

The prime divisors of 858 are {2, 3, 11, 13} and 858/2-1 = 428 is even, 858/3-1 = 285 is divisible by 3, 858/11-1 = 77 is a multiple of 11, and 858/13-1 = 65 = 13*5.

(End)

MATHEMATICA

fQ[n_] := AllTrue[First /@ FactorInteger@ n, Divisible[n/# - 1, #] &]; Select[Range@ 100000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Oct 05 2015 *)

PROG

(PARI) is(n)=if(isprime(n), return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if((n/f[i])%f[i]!=1, return(0))); n>1 \\ Charles R Greathouse IV, Apr 28 2015

(Python)

from itertools import count, islice

from sympy import isprime, primefactors

def A007850_gen(startvalue=2): # generator of terms >= startvalue

return filter(lambda x: not isprime(x) and all((x//p-1) % p == 0 for p in primefactors(x)), count(max(startvalue, 2)))

A007850_list = list(islice(A007850_gen(), 4)) # Chai Wah Wu, Feb 19 2022

CROSSREFS

Cf. A054377, A216823, A216824, A235137, A235138, A235140, A235363, A236434, A326690.

Sequence in context: A143169 A256324 A001201 * A162833 A163208 A163552

Adjacent sequences: A007847 A007848 A007849 * A007851 A007852 A007853

KEYWORD

nonn,nice,hard,more

AUTHOR

D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn

EXTENSIONS

a(12) from Fred Schneider, Jul 04 2006

Further references from Fred Schneider, Aug 19 2006

Definition corrected by Jonathan Sondow, Sep 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 09:24 EDT 2023. Contains 361688 sequences. (Running on oeis4.)