login
A027759
Numerator of Sum_{p prime, p-1|n} 1/p.
3
1, 5, 1, 31, 1, 41, 1, 31, 1, 61, 1, 3421, 1, 5, 1, 557, 1, 821, 1, 371, 1, 121, 1, 3421, 1, 5, 1, 929, 1, 15745, 1, 557, 1, 5, 1, 2557843, 1, 5, 1, 15541, 1, 1805, 1, 743, 1, 241, 1, 60887, 1, 61, 1, 1673, 1, 821, 1, 929, 1, 301, 1, 79085411, 1, 5, 1, 557
OFFSET
1,2
FORMULA
a(2n-1) = 1 and a(2n) = A000146(n)* A002445(n) - A000367(n) for n > 0. - Thomas Ordowski, May 06 2021
EXAMPLE
1/2, 5/6, 1/2, 31/30, 1/2, 41/42, 1/2, 31/30, 1/2, 61/66, 1/2, 3421/2730, 1/2, 5/6, 1/2, 557/510, ...
MATHEMATICA
a[n_] := 1/(Select[Divisors[n], PrimeQ[# + 1]&] + 1) // Total // Numerator;
Array[a, 100] (* Jean-François Alcover, Sep 20 2020 *)
PROG
(PARI) a(n) = numerator(sumdiv(n, d, if (isprime(d+1), 1/(d+1)))); \\ Michel Marcus, May 06 2021
CROSSREFS
Cf. A027760 (denominator).
Sequence in context: A049353 A373842 A165226 * A197654 A296043 A377058
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
a(57)-a(64) from John Cerkan, Mar 21 2018
STATUS
approved