OFFSET
0,2
COMMENTS
LINKS
Igor Victorovich Statsenko, Relationships of "P"-generalized Stirling numbers of the first kind with other generalized Stirling numbers, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-22. In Russian.
FORMULA
T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)* binomial(j, i)*i!*m^(j-i), for m = 2.
EXAMPLE
[0] 1;
[1] 5, 1;
[2] 32, 11, 1;
[3] 248, 113, 18, 1;
[4] 2248, 1230, 263, 26, 1;
[5] 23272, 14534, 3765, 505, 35, 1;
[6] 270400, 186992, 55654, 9115, 865, 45, 1;
[7] 3479744, 2612000, 865186, 163779, 19110, 1372, 56, 1;
[8] 49079936, 39434448, 14235388, 3013164, 408569, 36288, 2058, 68, 1;
MAPLE
T := (m, n, k) -> add(add(Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)*binomial(j, i)*i!*m^(j-i), j=i..n), i=0..n): m:=2: seq(seq(T(m, n, k), k=0..n), n=0..10);
CROSSREFS
KEYWORD
nonn
AUTHOR
Igor Victorovich Statsenko, Oct 14 2024
STATUS
approved