login
A377058
Triangle of generalized Stirling numbers of the lower level of the hierarchy (case m=2).
0
1, 5, 1, 32, 11, 1, 248, 113, 18, 1, 2248, 1230, 263, 26, 1, 23272, 14534, 3765, 505, 35, 1, 270400, 186992, 55654, 9115, 865, 45, 1, 3479744, 2612000, 865186, 163779, 19110, 1372, 56, 1, 49079936, 39434448, 14235388, 3013164, 408569, 36288, 2058, 68, 1
OFFSET
0,2
COMMENTS
These numbers are a subset of the generalized Stirling numbers introduced in A370518. Therefore, we assume them to be numbers of the lower level of hierarchy with respect to A370518.
LINKS
Igor Victorovich Statsenko, Relationships of "P"-generalized Stirling numbers of the first kind with other generalized Stirling numbers, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-22. In Russian.
FORMULA
T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)* binomial(j, i)*i!*m^(j-i), for m = 2.
EXAMPLE
[0] 1;
[1] 5, 1;
[2] 32, 11, 1;
[3] 248, 113, 18, 1;
[4] 2248, 1230, 263, 26, 1;
[5] 23272, 14534, 3765, 505, 35, 1;
[6] 270400, 186992, 55654, 9115, 865, 45, 1;
[7] 3479744, 2612000, 865186, 163779, 19110, 1372, 56, 1;
[8] 49079936, 39434448, 14235388, 3013164, 408569, 36288, 2058, 68, 1;
MAPLE
T := (m, n, k) -> add(add(Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)*binomial(j, i)*i!*m^(j-i), j=i..n), i=0..n): m:=2: seq(seq(T(m, n, k), k=0..n), n=0..10);
CROSSREFS
A361649 (row sums).
Triangle for m=0: A130534.
Triangle for m=1: A376863.
Sequence in context: A027759 A197654 A296043 * A336600 A336599 A066833
KEYWORD
nonn
AUTHOR
STATUS
approved