OFFSET
0,2
COMMENTS
Generalized Stirling numbers of the first kind of the second order.
LINKS
Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
FORMULA
T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(m,n,i) where TC(m,n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+m+1,i+1)*(-1)^(i),m = 2 for n >= 0.
EXAMPLE
n\k 0 1 2 3 4 5 6
0: 1
1: -5 1
2: 14 -9 1
3: -18 29 -12 1
4: 0 -22 35 -14 1
5: 0 -26 15 25 -15 1
6: 0 -60 4 75 -5 -15 1
MAPLE
C:=(n, k)->n!/(k!*(n-k)!) : T0:=(m, n, k)->sum(C(n+1, n-k-p)*Stirling2(p+m+1, p+1)*((-1)^p), p=0..n-k) : T:=(m, n, k)->sum(C(n, r)*(n-r)!*Stirling1(r, k)*T0(m, n, r), r=0..n) m:=2 : seq(seq T(m, n, k), k=0..n), n=0..10);
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Igor Victorovich Statsenko, Feb 21 2024
STATUS
approved