The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A370518 Triangle of numbers read by rows: T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(n,i) where TC(n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+3,i+1)*(-1)^(i) for n >= 0, 0 <= k <= n. 1
 1, -5, 1, 14, -9, 1, -18, 29, -12, 1, 0, -22, 35, -14, 1, 0, -26, 15, 25, -15, 1, 0, -60, 4, 75, -5, -15, 1, 0, -204, -56, 259, 70, -56, -14, 1, 0, -912, -484, 1092, 609, -168, -126, -12, 1, 0, -5040, -3708, 5480, 4599, -231, -882, -210, -9, 1, 0, -33120, -30024, 31820, 36350, 3675, -6027, -2370, -300, -5, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generalized Stirling numbers of the first kind of the second order. LINKS Table of n, a(n) for n=0..65. Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian. FORMULA T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(m,n,i) where TC(m,n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+m+1,i+1)*(-1)^(i),m = 2 for n >= 0. EXAMPLE n\k 0 1 2 3 4 5 6 0: 1 1: -5 1 2: 14 -9 1 3: -18 29 -12 1 4: 0 -22 35 -14 1 5: 0 -26 15 25 -15 1 6: 0 -60 4 75 -5 -15 1 MAPLE C:=(n, k)->n!/(k!*(n-k)!) : T0:=(m, n, k)->sum(C(n+1, n-k-p)*Stirling2(p+m+1, p+1)*((-1)^p), p=0..n-k) : T:=(m, n, k)->sum(C(n, r)*(n-r)!*Stirling1(r, k)*T0(m, n, r), r=0..n) m:=2 : seq(seq T(m, n, k), k=0..n), n=0..10); CROSSREFS For m=0 the formula gives the sequence A130534; for m=1 the formula gives the sequence A094645. In this case, we assume that A130534 consists of generalized Stirling numbers of the first kind of zero order, and A094645 consists of generalized Stirling numbers of the first kind of the first order. Sequence in context: A067558 A104792 A120393 * A094368 A295574 A087727 Adjacent sequences: A370515 A370516 A370517 * A370519 A370520 A370521 KEYWORD tabl,sign AUTHOR Igor Victorovich Statsenko, Feb 21 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 04:43 EDT 2024. Contains 374544 sequences. (Running on oeis4.)