login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295574
a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^2.
3
0, 1, 1, 1, 5, 1, 14, 10, 21, 10, 55, 26, 91, 35, 70, 84, 204, 75, 285, 140, 210, 165, 506, 196, 525, 286, 549, 406, 1015, 340, 1240, 680, 880, 680, 1190, 654, 2109, 969, 1482, 1080, 2870, 966, 3311, 1650, 2010, 1771, 4324, 1544, 4214, 2050
OFFSET
1,5
COMMENTS
n does not divide a(n) iff n = (2^k)*(q^m) with k > 0, m >= 0 and q odd prime such that q == 3 (mod 4) or n = (2^k)*(3^L)*Product_{q} q^(v_q) with k >= 0, L > 0, v_q >= 0 and all q odd primes such that q == 5 (mod 6). - René Gy, Oct 21 2018
LINKS
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
MAPLE
R:=proc(n, k) local x, t1, S;
t1:={}; S:=0;
for x from 1 to floor(n/2) do if gcd(x, n)=1 then t1:={op(t1), x^k}; S:=S+x^k; fi; od;
S; end;
s:=k->[seq(R(n, k), n=1..50)];
s(2);
MATHEMATICA
f[n_] := Plus @@ (Select[ Range[n/2], GCD[#, n] == 1 &]^2); Array[f, 50] (* Robert G. Wilson v, Dec 10 2017 *)
PROG
(PARI) a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^2); \\ Michel Marcus, Dec 10 2017
CROSSREFS
In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.
Cf. A023022.
Sequence in context: A120393 A370518 A094368 * A087727 A039807 A213590
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2017
STATUS
approved