login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295576
a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.
3
0, 1, 1, 1, 17, 1, 98, 82, 273, 82, 979, 626, 2275, 707, 2674, 3108, 8772, 3027, 15333, 9044, 14994, 9669, 39974, 17668, 50085, 24310, 60597, 50470, 127687, 45604, 178312, 103496, 149908, 103496, 225302, 129750, 432345, 187017, 349830, 266088, 722666
OFFSET
1,5
COMMENTS
If p is an odd prime, a(p) = p*(p^2-1)*(3*p^2-7)/480. - Robert Israel, Dec 10 2017
LINKS
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
MAPLE
f:= n -> add(t^4, t = select(t->igcd(t, n)=1, [$1..n/2])):
map(f, [$1..100]); # Robert Israel, Dec 10 2017
MATHEMATICA
f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^4); Array[f, 41] (* Robert G. Wilson v, Dec 10 2017 *)
PROG
(PARI) a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^4); \\ Michel Marcus, Dec 10 2017
CROSSREFS
In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.
Sequence in context: A102292 A264439 A279363 * A376019 A223519 A139804
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2017
STATUS
approved