login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.
3

%I #21 Dec 10 2017 19:11:34

%S 0,1,1,1,17,1,98,82,273,82,979,626,2275,707,2674,3108,8772,3027,15333,

%T 9044,14994,9669,39974,17668,50085,24310,60597,50470,127687,45604,

%U 178312,103496,149908,103496,225302,129750,432345,187017,349830,266088,722666

%N a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.

%C If p is an odd prime, a(p) = p*(p^2-1)*(3*p^2-7)/480. - _Robert Israel_, Dec 10 2017

%H Seiichi Manyama, <a href="/A295576/b295576.txt">Table of n, a(n) for n = 1..10000</a>

%H John D. Baum, <a href="http://www.jstor.org/stable/2690056">A Number-Theoretic Sum</a>, Mathematics Magazine 55.2 (1982): 111-113.

%p f:= n -> add(t^4, t = select(t->igcd(t,n)=1, [$1..n/2])):

%p map(f, [$1..100]); # _Robert Israel_, Dec 10 2017

%t f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^4); Array[f, 41] (* _Robert G. Wilson v_, Dec 10 2017 *)

%o (PARI) a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^4); \\ _Michel Marcus_, Dec 10 2017

%Y In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.

%K nonn

%O 1,5

%A _N. J. A. Sloane_, Dec 08 2017