login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279363
Sum of 4th powers of proper divisors of n.
6
0, 1, 1, 17, 1, 98, 1, 273, 82, 642, 1, 1650, 1, 2418, 707, 4369, 1, 7955, 1, 10898, 2483, 14658, 1, 26482, 626, 28578, 6643, 41090, 1, 62644, 1, 69905, 14723, 83538, 3027, 133923, 1, 130338, 28643, 174994, 1, 236692, 1, 249170, 57893, 279858, 1, 423794, 2402, 401267, 83603, 485810, 1, 644372, 15267, 659842, 130403, 707298, 1, 1053636
OFFSET
1,4
FORMULA
a(n) = 1 if n is prime.
a(p^k) = (p^(4*k) - 1)/(p^4 - 1) for p is prime.
Dirichlet g.f.: zeta(s-4)*(zeta(s) - 1).
a(n) = A001159(n) - A000583(n).
G.f.: -x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5 + Sum_{k>=1} k^4 x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 18 2017
Sum_{k=1..n} a(k) ~ (Zeta(5) - 1)*n^5 / 5. - Vaclav Kotesovec, Feb 02 2019
EXAMPLE
a(10) = 1^4 + 2^4 + 5^4 = 642, because 10 has 3 proper divisors {1,2,5}.
a(11) = 1^4 = 1, because 11 has 1 proper divisor {1}.
MATHEMATICA
Table[DivisorSigma[4, n] - n^4, {n, 60}]
PROG
(PARI) for(n=1, 60, print1(sigma(n, 4) - n^4, ", ")) \\ Indranil Ghosh, Mar 18 2017
(Python)
from sympy.ntheory import divisor_sigma
print([divisor_sigma(n, 4) - n**4 for n in range(1, 61)]) # Indranil Ghosh, Mar 18 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 10 2016
STATUS
approved