OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/24) * eta(q^2)^4 * eta(q^5) / (eta(q)^2 * eta(q^10)) in powers of q.
Euler transform of period 10 sequence [ 2, -2, 2, -2, 1, -2, 2, -2, 2, -2, ...].
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 - x^5 + x^6 + x^7 - 2*x^8 + 2*x^10 + ...
G.f. = q + 2*q^25 + q^49 + 2*q^73 + 2*q^97 - q^121 + q^145 + q^169 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-1/4) / 4 EllipticTheta[ 2, 0, x^(1/2)]^2 QPochhammer[ x^5, x^10], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^5 + A) / (eta(x + A)^2 * eta(x^10 + A)), n))};
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)^4*eta(q^5)/(eta(q)^2*eta(q^10)))} \\ Altug Alkan, Mar 21 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Dec 10 2016
STATUS
approved