login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279362
Expansion of psi(x)^2 * chi(-x^5) in powers of x where psi(), chi() are Ramanujan theta functions.
1
1, 2, 1, 2, 2, -1, 1, 1, -2, 0, 2, -1, -1, 2, -2, -1, 0, -2, -2, -2, 0, -1, 1, 0, 2, -2, -5, 0, -2, 0, 0, 1, -2, 0, 0, -3, -1, 0, 0, -2, 1, -1, 2, 2, 0, 0, 0, -2, -2, 0, 2, 2, -2, 0, -2, 2, 1, 1, 0, 0, 0, -1, 2, 0, 4, 0, 1, 2, 0, 2, -1, 0, 0, 2, -2, -2, 4, -1
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/24) * eta(q^2)^4 * eta(q^5) / (eta(q)^2 * eta(q^10)) in powers of q.
Euler transform of period 10 sequence [ 2, -2, 2, -2, 1, -2, 2, -2, 2, -2, ...].
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 - x^5 + x^6 + x^7 - 2*x^8 + 2*x^10 + ...
G.f. = q + 2*q^25 + q^49 + 2*q^73 + 2*q^97 - q^121 + q^145 + q^169 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-1/4) / 4 EllipticTheta[ 2, 0, x^(1/2)]^2 QPochhammer[ x^5, x^10], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^5 + A) / (eta(x + A)^2 * eta(x^10 + A)), n))};
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)^4*eta(q^5)/(eta(q)^2*eta(q^10)))} \\ Altug Alkan, Mar 21 2018
CROSSREFS
Sequence in context: A186713 A156263 A109672 * A214841 A025917 A135689
KEYWORD
sign
AUTHOR
Michael Somos, Dec 10 2016
STATUS
approved