login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376019
a(n) = Sum_{d|n} d^n * binomial(n/d-1,d-1).
1
1, 1, 1, 17, 1, 129, 1, 769, 19684, 4097, 1, 1614804, 1, 98305, 86093443, 4295426049, 1, 3876302043, 1, 4398055948289, 156905298046, 41943041, 1, 2820680971922038, 298023223876953126, 805306369, 213516729579637, 1441151884248219649, 1
OFFSET
1,4
FORMULA
G.f.: Sum_{k>=1} ( (k*x)^k / (1 - (k*x)^k) )^k.
If p is prime, a(p) = 1.
PROG
(PARI) a(n) = sumdiv(n, d, d^n*binomial(n/d-1, d-1));
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k/(1-(k*x)^k))^k))
(Python)
from math import comb
from itertools import takewhile
from sympy import divisors
def A376019(n): return sum(d**n*comb(n//d-1, d-1) for d in takewhile(lambda d:d**2<=n, divisors(n))) # Chai Wah Wu, Sep 06 2024
CROSSREFS
Sequence in context: A264439 A279363 A295576 * A223519 A139804 A321259
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 06 2024
STATUS
approved