Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 06 2024 14:13:02
%S 1,1,1,17,1,129,1,769,19684,4097,1,1614804,1,98305,86093443,
%T 4295426049,1,3876302043,1,4398055948289,156905298046,41943041,1,
%U 2820680971922038,298023223876953126,805306369,213516729579637,1441151884248219649,1
%N a(n) = Sum_{d|n} d^n * binomial(n/d-1,d-1).
%F G.f.: Sum_{k>=1} ( (k*x)^k / (1 - (k*x)^k) )^k.
%F If p is prime, a(p) = 1.
%o (PARI) a(n) = sumdiv(n, d, d^n*binomial(n/d-1, d-1));
%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k/(1-(k*x)^k))^k))
%o (Python)
%o from math import comb
%o from itertools import takewhile
%o from sympy import divisors
%o def A376019(n): return sum(d**n*comb(n//d-1,d-1) for d in takewhile(lambda d:d**2<=n,divisors(n))) # _Chai Wah Wu_, Sep 06 2024
%Y Cf. A023887, A376015.
%K nonn
%O 1,4
%A _Seiichi Manyama_, Sep 06 2024