login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370520
Triangular numbers (A000217) in A353729.
0
1, 3, 6, 55, 66, 666, 1128, 1326, 2346, 31626, 133386, 193131, 212226, 236328, 283128, 416328, 881128, 1211346, 1222266, 1466328, 1777555, 2263128, 11293128, 14191128, 16111326, 16316328, 22121226, 22261128, 26263128, 31621128, 32292666, 33321366, 33533955, 39139128
OFFSET
1,2
COMMENTS
Intersection of A000217 and A353729.
The sequence is infinite because the numbers T(1327) = 881128, T(13327) = 88811128, T(133327) = 8888111128, ..... are terms.
Also, the numbers T(651) = 21226, T(6651) = 22121226, T(66651) = 2221211226, T(666651) = 222212111226.... or T(672) = 226128, T(6672) = 22261128, T(66672) = 2222611128, ... are terms.
EXAMPLE
2346 = A000217(68) and 346 = 2*173, 246 = 3*82, 234 = 6*39, so 2346 is a term.
PROG
(Magma) ints:=func<n| n eq 0 select[0] else Intseq(n)>; f:=func<n, i|Seqint([ints(n)[j]:j in [1..#ints(n)]|j ne (#ints(n)-i+1)])>; [p:p in [s*(s+1) div 2:s in [1..10000]]|not 0 in ints(p) and forall{i:i in [1..#ints(p)]|IsIntegral( f(p, i)/ ints(p)[(#Intseq(p)-i+1)] )}];
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Feb 27 2024
STATUS
approved